Previous |  Up |  Next

Article

Title: Almost $\tilde g_\alpha$-closed functions and separation axioms (English)
Author: Ravi, O.
Author: Ganesan, S.
Author: Latha, R.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 3
Year: 2012
Pages: 275-291
Summary lang: English
.
Category: math
.
Summary: We introduce a new class of functions called almost $\tilde {g}_{\alpha }$-closed and use the functions to improve several preservation theorems of normality and regularity and also their generalizations. The main result of the paper is that normality and weak normality are preserved under almost $\tilde {g}_{\alpha }$-closed continuous surjections. (English)
Keyword: topological space
Keyword: $\tilde {g}$-closed set
Keyword: $\tilde {g}_{\alpha }$-closed set
Keyword: $\alpha g$-closed set
MSC: 54C05
MSC: 54C08
MSC: 54C10
MSC: 54D15
idZBL: Zbl 1265.54087
idMR: MR3112488
DOI: 10.21136/MB.2012.142895
.
Date available: 2012-08-19T21:21:38Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142895
.
Reference: [1] Andrijevic, D.: Some properties of the topology of $\alpha$-sets.Mat. Vesn. 36 (1984), 1-10. Zbl 0546.54003, MR 0880637
Reference: [2] Carnahan, D.: Some properties related to compactness in topological spaces.Ph.D. Thesis, Univ. of Arkansas (1973). MR 2623205
Reference: [3] Devi, R., Balachandran, K., Maki, H.: On generalized $\alpha$-continuous maps and $\alpha$-generalized continuous maps.Far East J. Math. Sci. (1997), 1-15.
Reference: [4] Frolík, Z.: Remarks concerning the invariance of Baire spaces under mappings.Czech. Math. J. 11 (1961), 381-385. MR 0133098
Reference: [5] Ganster, M.: On strongly $s$-regular spaces.Glas. Mat., III. Ser. 25 (1990), 195-201. Zbl 0733.54012, MR 1108963
Reference: [6] Greenwood, S., Reilly, I. L.: On feebly closed mappings.Indian J. Pure Appl. Math. 17 (1986), 1101-1105. Zbl 0604.54012, MR 0864149
Reference: [7] Jafari, S., Noiri, T., Rajesh, N., Thivagar, M. L.: Another generalization of closed sets.Kochi J. Math. 3 (2008), 25-38. Zbl 1148.54304, MR 2408589
Reference: [8] Jafari, S., Thivagar, M. L., Paul, Nirmala Rebecca: Remarks on $\tilde{g}_{\alpha}$-closed sets in topological spaces.Int. Math. Forum 5 (2010), 1167-1178. Zbl 1207.54030, MR 2652960
Reference: [9] Jankovic, D. S., Konstadilaki-Savvopoulou, Ch.: On $\alpha$-continuous functions.Math. Bohem. 117 (1992), 259-270. Zbl 0802.54005, MR 1184539
Reference: [10] Levine, N.: Generalized closed sets in topology.Rend. Circ. Mat. Palermo, II. Ser. 19 (1970), 89-96. Zbl 0231.54001, MR 0305341, 10.1007/BF02843888
Reference: [11] Levine, N.: Semi-open sets and semi-continuity in topological spaces.Am. Math. Mon. 70 (1963), 36-41. Zbl 0113.16304, MR 0166752, 10.2307/2312781
Reference: [12] Long, P. E., Herrington, L. L.: Basic properties of regular-closed functions.Rend Circ. Mat. Palermo, II. Ser. 27 (1978), 20-28. Zbl 0416.54005, MR 0542230
Reference: [13] Maki, H., Devi, R., Balachandran, K.: Generalized $\alpha$-closed sets in topology.Bull. Fukuoka Univ. Educ., Part III 42 (1993), 13-21. Zbl 0888.54005
Reference: [14] Maki, H., Devi, R., Balachandran, K.: Associated topologies of generalized $\alpha$-closed sets and $\alpha$-generalized closed sets.Mem. Fac. Sci., Kochi Univ., Ser. A 15 (1994), 51-63. Zbl 0821.54002, MR 1262966
Reference: [15] Maki, H., Rao, K. Chandrasekhara, Gani, A. Nagoor: On generalizing semi-open and preopen sets.Pure Appl. Math. Sci. 49 (1999), 17-29. MR 1696955
Reference: [16] Malghan, S. R.: Generalized closed maps.J. Karnatak Univ., Sci. 27 (1982), 82-88. Zbl 0578.54008, MR 0773568
Reference: [17] Mashhour, A. S., Hasanein, I. A., El-Deeb, S. N.: $\alpha$-continuous and $\alpha$-open mappings.Acta Math. Hung. 41 (1983), 213-218. Zbl 0534.54006, MR 0703734, 10.1007/BF01961309
Reference: [18] Min, W. K.: $\alpha m$-open sets and $\alpha M$-continuous functions.Commun. Korean Math. Soc. 25 (2010), 251-256. Zbl 1211.54030, MR 2662974, 10.4134/CKMS.2010.25.2.251
Reference: [19] Min, W. K., Kim, Y. K.: On weak $M$-semicontinuity on spaces with minimal structures.J. Chungcheong Math. Soc. 23 (2010), 223-229.
Reference: [20] Njastad, O.: On some classes of nearly open sets.Pac. J. Math. 15 (1965), 961-970. Zbl 0137.41903, MR 0195040, 10.2140/pjm.1965.15.961
Reference: [21] Noiri, T.: Almost-closed images of countably paracompact spaces.Commentat. Math. 20 (1978), 423-426. Zbl 0398.54007, MR 0519378
Reference: [22] Noiri, T.: Mildly normal spaces and some functions.Kyungpook Math. J. 36 (1996), 183-190. Zbl 0873.54016, MR 1396023
Reference: [23] Noiri, T.: Almost $\alpha g$-closed functions and separation axioms.Acta Math. Hung. 82 (1999), 193-205. Zbl 0924.54020, MR 1674100, 10.1023/A:1026404730639
Reference: [24] Noiri, T., Popa, V.: A unified theory of closed functions.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 49 (2006), 371-382. Zbl 1119.54304, MR 2281517
Reference: [25] Palaniappan, N., Rao, K. C.: Regular generalized closed sets.Kyungpook Math. J. 33 (1993), 211-219. Zbl 0794.54002, MR 1253673
Reference: [26] Popa, V., Noiri, T.: On $M$-continuous functions.Anal. Univ. ``Dunarea de Jos'', Galati, Ser. Mat. Fiz. Mecan. Teor. Fasc. II. 18 (2000), 31-41. MR 2314773
Reference: [27] Popa, V., Noiri, T.: On the definitions of some generalized forms of continuity under minimal conditions.Mem. Fac. Sci., Kochi Univ., Ser. A 22 (2001), 31-41. Zbl 0972.54011, MR 1822060
Reference: [28] Porter, J. R., Woods, R. G.: Extensions and Absolutes of Hausdorff spaces.Springer, New York (1988). Zbl 0652.54016, MR 0918341
Reference: [29] Ravi, O., Ganesan, S., Chandrasekar, S.: Almost $\alpha gs$-closed functions and separation axioms.Bulletin of Mathematical Analysis and Applications 3 (2011), 165-177. MR 2792611
Reference: [30] Rosas, E., Rajesh, N., Carpintero, C.: Some new types of open and closed sets in minimal structures. II.Int. Math. Forum 4 (2009), 2185-2198. Zbl 1191.54003, MR 2563392
Reference: [31] Singal, M. K., Arya, S. P.: On almost-regular spaces.Glas. Mat., III. Ser. 4 (1969), 89-99. Zbl 0169.24902, MR 0243483
Reference: [32] Singal, M. K., Arya, S. P.: Almost normal and almost completely regular spaces.Glas. Mat., III. Ser. 5 (1970), 141-152. Zbl 0197.18901, MR 0275354
Reference: [33] Singal, M. K., Singal, A. R.: Almost-continuous mappings.Yokohama Math. J. 16 (1968), 63-73. Zbl 0191.20802, MR 0261569
Reference: [34] Singal, M. K., Singal, A. R.: Mildly normal spaces.Kyungpook Math. J. 13 (1973), 27-31. Zbl 0266.54006, MR 0362215
Reference: [35] Kumar, M. K. R. S. Veera: $\hat{g}$-closed sets in topological spaces.Bull. Allahabad Math. Soc. 18 (2003), 99-112. MR 2061436
Reference: [36] Kumar, M. K. R. S. Veera: Between $g^*$-closed sets and $g$-closed sets.Antarct. J. Math. 3 (2006), 43-65. MR 2296082
Reference: [37] Kumar, M. K. R. S. Veera: $^{\sharp} g$-semi-closed sets in topological spaces.Antarct. J. Math. 2 (2005), 201-222. MR 2203685
Reference: [38] Wang, Guojun: On S-closed spaces.Acta Math. Sin. 24 (1981), 55-63. Zbl 0503.54031, MR 0617426
Reference: [39] Yoshimura, M., Miwa, T., Noiri, T.: A generalization of regular closed and $g$-closed functions.Stud. Cercet. Mat. 47 (1995), 353-358. Zbl 0854.54020, MR 1682872
Reference: [40] Zenor, P.: On countable paracompactness and normality.Pr. Mat. 13 (1969), 23-32. Zbl 0242.54016, MR 0248724
.

Files

Files Size Format View
MathBohem_137-2012-3_3.pdf 284.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo