Previous |  Up |  Next

Article

Title: Convergence properties for arrays of rowwise pairwise negatively quadrant dependent random variables (English)
Author: Wu, Yongfeng
Author: Wang, Dingcheng
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 5
Year: 2012
Pages: 463-476
Summary lang: English
.
Category: math
.
Summary: In this paper the authors study the convergence properties for arrays of rowwise pairwise negatively quadrant dependent random variables. The results extend and improve the corresponding theorems of T. C. Hu, R. L. Taylor: On the strong law for arrays and for the bootstrap mean and variance, Int. J. Math. Math. Sci 20 (1997), 375–382. (English)
Keyword: complete convergence
Keyword: complete moment convergence
Keyword: $L^q$ convergence
Keyword: pairwise NQD random variables
MSC: 60F15
MSC: 60F25
idZBL: Zbl 1265.60067
idMR: MR2984614
DOI: 10.1007/s10492-012-0027-6
.
Date available: 2012-08-19T21:57:54Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/142911
.
Reference: [1] Adler, A., Rosalsky, A., Volodin, A.: A mean convergence theorem and weak law for arrays of random elements in martingale type $p$ Banach spaces.Stat. Probab. Lett. 32 (1997), 167-174. Zbl 0874.60008, MR 1436862, 10.1016/S0167-7152(97)85593-9
Reference: [2] Bryc, W., Smoleński, W.: Moment conditions for almost sure convergence of weakly correlated random variables.Proc. Am. Math. Soc. 119 (1993), 629-635. Zbl 0785.60018, MR 1149969, 10.1090/S0002-9939-1993-1149969-7
Reference: [3] Chow, Y. S.: On the rate of moment complete convergence of sample sums and extremes.Bull. Inst. Math. Acad. Sin. 16 (1988), 177-201. MR 1089491
Reference: [4] Ebrahimi, N., Ghosh, M.: Multivariate negative dependence.Commun. Stat., Theory Methods 10 (1981), 307-337. Zbl 0506.62034, MR 0612400, 10.1080/03610928108828041
Reference: [5] Gan, S. X., Chen, P. Y.: On the limiting behavior of the maximum partial sums for arrays of rowwise NA random variables.Acta Math. Sci., Ser. B, Engl. Ed. 27 (2007), 283-290. Zbl 1125.60027, MR 2313226, 10.1016/S0252-9602(07)60027-7
Reference: [6] Hsu, P. L., Robbins, H.: Complete convergence and the law of large numbers.Proc. Natl. Acad. Sci. 33 (1947), 25-31. Zbl 0030.20101, MR 0019852, 10.1073/pnas.33.2.25
Reference: [7] Hu, T. C., Taylor, R. L.: On the strong law for arrays and for the bootstrap mean and variance.Int. J. Math. Math. Sci. 20 (1997), 375-382. Zbl 0883.60024, MR 1444739, 10.1155/S0161171297000483
Reference: [8] Joag-Dev, K., Proschan, F.: Negative association of random variables with applications.Ann. Stat. 11 (1983), 286-295. MR 0684886, 10.1214/aos/1176346079
Reference: [9] Lehmann, E. L.: Some concepts of dependence.Ann. Math. Stat. 37 (1966), 1137-1153. Zbl 0146.40601, MR 0202228, 10.1214/aoms/1177699260
Reference: [10] Wang, D. C., Zhao, W.: Moment complete convergence for sums of a sequence of NA random variables.Appl. Math., Ser. A (Chin. Ed.) 21 (2006), 445-450 Chinese. Zbl 1137.60320, MR 2270685
Reference: [11] Wu, Q. Y.: Convergence properties of pairwise NQD random sequences.Acta Math. Sin. 45 (2002), 617-624 Chinese. Zbl 1008.60039, MR 1915127
Reference: [12] Wu, Y. F., Zhu, D. J.: Convergence properties of partial sums for arrays of rowwise negatively orthant dependent random variables.J. Korean Stat. Soc. 39 (2010), 189-197 \MR 2642485. Zbl 1294.60056, MR 2642485, 10.1016/j.jkss.2009.05.003
Reference: [13] Yang, S. C.: Almost sure convergence of weighted sums of mixing sequences.J. Syst. Sci. Math. Sci. 15 (1995), 254-265 Chinese. Zbl 0869.60029
.

Files

Files Size Format View
AplMat_57-2012-5_3.pdf 252.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo