[1] Alouges, F., Y., Chitour, Long, R.: 
A motion planning algorithm for the rolling–body problem. IEEE Trans. on Robotics (2010). 
DOI 10.1109/TRO.2010.2053733[3] Cheeger, J., Ebin, D. G.: 
Comparison theorems in Riemannian geometry. North-Holland Math. Library 9 (1975). 
MR 0458335[4] Chelouah, A., Chitour, Y.: 
On the controllability and trajectories generation of rolling surfaces. Forum Math. 15 (2003), 727–758. 
MR 2010032[5] Chitour, Y., Kokkonen, P.: Rolling Manifolds: Intrinsic Formulation and Controllability. preprint, arXiv:1011.2925v2 [math.DG], 2011.
[6] Godoy Molina, M., Grong, E.: Geometric conditions for the existence of an intrinsic rolling. preprint, arXiv:1111.0752v1 [math.DG], 2011.
[7] Godoy Molina, M., Grong, E., Markina, I., Silva Leite, F.: An intrinsic formulation to the rolling manifolds problem. preprint, arXiv:1008.1856v1 [math.DG], 2010.
[8] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. vol. 1, Wiley–Interscience, 1996.
[12] Sakai, T.: 
Riemannian Geometry. Transl. Math. Monogr., 149, American Mathematical Society, Providence, RI, 1996. 
MR 1390760[13] Sharpe, R. W.: 
Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program. Graduate Texts in Mathematics, vol. 166, Springer–Verlag, New York, 1997. 
MR 1453120