[1] Abouzaid, M.: 
Lucas and Lehmer numbers without primitive divisor. (Les nombres de Lucas et Lehmer sans diviseur primitif). J. Théor. Nombres Bordx. (2006), 18 299-313. 
DOI 10.5802/jtnb.545 | 
MR 2289425 | 
Zbl 1139.11011[2] Bennett, M. A., Skinner, C. M.: 
Ternary diophantine equations via Galois representations and modular forms. Can. J. Math. (2004), 56 23-54. 
MR 2031121 | 
Zbl 1053.11025[3] Beukers, F.: 
On the generalized Ramanujan-Nagell equation. I. Acta Arith. (1980/81), 38 389-410. 
MR 0621008[4] Bilu, Y., Hanrot, G., Voutier, P. M., Mignotte), (M.: 
Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte). J. Reine Angew. Math. (2001), 539 75-122. 
MR 1863855[5] Cangül, I. N., Demirci, M., Luca, F., Pintér, Á., Soydan, G.: 
On the diophantine equation $x^2+2^a\cdot 11^b=y^n$. Fibonacci Q. (2010), 48 39-46. 
MR 2663418[6] Carmichael, R. D.: 
On the numerical factors of the arithmetic forms $\alpha^n\pm \beta^n$. Ann. of Math. (2) (1913/14), 15 30-48. 
MR 1502458[11] Ljunggren, W.: 
Einige Sätze über Unbestimmte Gleichungen von der Form $Ax^4+Bx^2+C =Dy^2$. German Skr. Norske Vid.-Akad., Oslo. I. Math.-Naturvid. Kl. No. 9. Oslo: Jacob Dybwad (1943). 
MR 0011476[12] Luca, F.: 
On the equation $x^2+2^a\cdot 3^b=y^n$. Int. J. Math. Math. Sci. (2002), 29 239-244. 
MR 1897992[13] Luca, F., Togbé, A.: 
On the diophantine equation $x^2+2^a\cdot 5^b=y^n$. Int. J. Number Theory (2008), 4 973-979. 
MR 2483306[14] Luca, F., Togbé, A.: 
On the diophantine equation $x^2+2^\alpha 13^\beta=y^n$. Colloq. Math. (2009), 116 139-146. 
MR 2504836[15] Mih$\check{a}$ilescu, P.: 
Primary cyclotomic units and a proof of Catalan's conjecture. J. Reine Angew. Math. (2004), 572 167-195. 
MR 2076124[16] Rabinowicz, S.: The solution of $y^2\pm 2^n=x^3$. Proc. Amer. Math. Soc. (1976), 62 1-6.