Previous |  Up |  Next

Article

Title: Impulsive boundary value problems for $p(t)$-Laplacian's via critical point theory (English)
Author: Galewski, Marek
Author: O'Regan, Donal
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 4
Year: 2012
Pages: 951-967
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate the existence of solutions to impulsive problems with a $p(t)$-Laplacian and Dirichlet boundary value conditions. We introduce two types of solutions, namely a weak and a classical one which coincide because of the fundamental lemma of the calculus of variations. Firstly we investigate the existence of solution to the linear problem, i.e. a problem with a fixed rigth hand side. Then we use a direct variational method and next a mountain pass approach in order to get the existence of at least one weak solution to the nonlinear problem. (English)
Keyword: $p( t)$-Laplacian
Keyword: impulsive condition
Keyword: critical point
Keyword: variational method
Keyword: Dirichlet problem
MSC: 34B37
MSC: 47J30
MSC: 58E50
idZBL: Zbl 1274.34083
idMR: MR3010250
DOI: 10.1007/s10587-012-0076-8
.
Date available: 2012-11-10T21:34:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143038
.
Reference: [1] Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions.Contemporary Mathematics and Its Applications, 2. Hindawi Publishing Corporation, New York (2006). Zbl 1130.34003, MR 2322133
Reference: [2] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration.SIAM J. Appl. Math. 66 (2006), 1383-1406. Zbl 1102.49010, MR 2246061, 10.1137/050624522
Reference: [3] Fan, X. L., Zhang, Q. H.: Existence of solutions for $p(x)$-Laplacian Dirichlet problem.Nonlinear Anal., Theory Methods Appl. 52 (2003), 1843-1852. Zbl 1146.35353, MR 1954585, 10.1016/S0362-546X(02)00150-5
Reference: [4] Fan, X. L., Zhao, D.: On the spaces $L^{p( x) }( \Omega ) $ and $W^{m,p( x) }( \Omega ) $.J. Math. Anal. Appl. 263 (2001), 424-446. MR 1866056, 10.1006/jmaa.2000.7617
Reference: [5] Feng, M., Xie, D.: Multiple positive solutions of multi-point boundary value problem for second-order impulsive differential equations.J. Comput. Appl. Math. 223 (2009), 438-448. Zbl 1159.34022, MR 2463127, 10.1016/j.cam.2008.01.024
Reference: [6] Ge, W., Tian, Y.: Applications of variational methods to boundary-value problem for impulsive differential equations.Proc. Edinb. Math. Soc., II. Ser. 51 (2008), 509-527. Zbl 1163.34015, MR 2465922, 10.1017/S0013091506001532
Reference: [7] Harjulehto, P., Hästö, P., Le, U. V., Nuortio, M.: Overview of differential equations with non-standard growth.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4551-4574. Zbl 1188.35072, MR 2639204, 10.1016/j.na.2010.02.033
Reference: [8] Jankowski, T.: Positive solutions to second order four-point boundary value problems for impulsive differential equations.Appl. Math. Comput. 202 (2008), 550-561. MR 2435690, 10.1016/j.amc.2008.02.040
Reference: [9] Mawhin, J.: Problemes de Dirichlet Variationnels non Linéaires.French Les Presses de l'Université de Montréal, Montreal (1987). Zbl 0644.49001, MR 0906453
Reference: [10] Nieto, J. J., O'Regan, D.: Variational approach to impulsive differential equations.Nonlinear Anal., Real World Appl. 10 (2009), 680-690. Zbl 1167.34318, MR 2474254
Reference: [11] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory.Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000. Zbl 0968.76531, MR 1810360, 10.1007/BFb0104030
Reference: [12] Teng, K., Zhang, Ch.: Existence of solution to boundary value problem for impulsive differential equations.Nonlinear Anal., Real World Appl. 11 (2010), 4431-4441. Zbl 1207.34034, MR 2683887
Reference: [13] Troutman, J. L.: Variational Calculus with Elementary Convexity. With the assistence of W. Hrusa.Undergraduate Texts in Mathematics. Springer, New York (1983). Zbl 0523.49001, MR 0697723
Reference: [14] Zhang, H., Li, Z.: Variational approach to impulsive differential equations with periodic boundary conditions.Nonlinear Anal., Real World Appl. 11 (2010), 67-78. Zbl 1186.34089, MR 2570525
Reference: [15] Zhang, Z., Yuan, R.: An application of variational methods to Dirichlet boundary value problem with impulses.Nonlinear Anal., Real World Appl. 11 (2010), 155-162. Zbl 1191.34039, MR 2570535
Reference: [16] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory.Math. USSR, Izv. 29 (1987), 33-66; translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 675-710 (1986). Zbl 0599.49031, MR 0864171, 10.1070/IM1987v029n01ABEH000958
.

Files

Files Size Format View
CzechMathJ_62-2012-4_7.pdf 306.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo