Previous |  Up |  Next

Article

Title: An identity involving Dedekind sums and generalized Kloosterman sums (English)
Author: Huan, Le
Author: Wang, Jingzhe
Author: Wang, Tingting
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 4
Year: 2012
Pages: 991-1001
Summary lang: English
.
Category: math
.
Summary: The various properties of classical Dedekind sums $S(h, q)$ have been investigated by many authors. For example, Yanni Liu and Wenpeng Zhang: A hybrid mean value related to the Dedekind sums and Kloosterman sums, Acta Mathematica Sinica, 27 (2011), 435–440 studied the hybrid mean value properties involving Dedekind sums and generalized Kloosterman sums $K(m, n, r; q)$. The main purpose of this paper, is using the analytic methods and the properties of character sums, to study the computational problem of one kind of hybrid mean value involving Dedekind sums and generalized Kloosterman sums, and give an interesting identity. (English)
Keyword: Dedekind sum
Keyword: Kloosterman sum
Keyword: Dirichlet character
Keyword: analytic method
Keyword: Gauss sum
Keyword: identity
MSC: 11F20
MSC: 11L05
MSC: 11M20
MSC: 11N37
idZBL: Zbl 1259.11089
idMR: MR3010252
DOI: 10.1007/s10587-012-0078-6
.
Date available: 2012-11-10T21:36:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143040
.
Reference: [1] Apostol, T. M.: Introduction to Analytic Number Theory.Undergraduate Texts in Mathematics Springer, New York-Heidelberg-Berlin (1976). Zbl 0335.10001, MR 0434929
Reference: [2] Apostol, T. M.: Modular Functions and Dirichlet Series in Number Theory.Graduate Texts in Mathematics Springer, New York-Heidelberg-Berlin (1976). Zbl 0332.10017, MR 0422157
Reference: [3] Carlitz, L.: The reciprocity theorem for Dedekind sums.Pac. J. Math. 3 (1953), 523-527. Zbl 0057.03703, MR 0056020, 10.2140/pjm.1953.3.523
Reference: [4] Conrey, J. B., Fransen, E., Klein, R., Scott, C.: Mean values of Dedekind sums.J. Number Theory 56 (1996), 214-226. Zbl 0851.11028, MR 1373548, 10.1006/jnth.1996.0014
Reference: [5] Estermann, T.: On Kloostermann's sums.Mathematika, Lond. 8 (1961), 83-86. MR 0126420, 10.1112/S0025579300002187
Reference: [6] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory (Rev. and expand. version of 1972).Graduate Texts in Mathematics Springer, New York-Heidelberg-Berlin (1982). Zbl 0482.10001, MR 0661047
Reference: [7] Liu, Y., Zhang, W.: A hybrid mean value related to the Dedekind sums and Kloosterman sums.Sci. China, Math. 53 (2010), 2543-2550; Acta Math. Sin. 27 (2011), 435-440 MR 2718846, 10.1007/s11425-010-3153-1
Reference: [8] Zhang, W.: On the mean values of Dedekind sums.J. Théor. Nombres Bordx. 8 (1996), 429-442. Zbl 0871.11033, MR 1438480, 10.5802/jtnb.179
Reference: [9] Zhang, W.: A sum analogous to Dedekind sums and its hybrid mean value formula.Acta Arith. 107 (2003), 1-8. Zbl 1126.11317, MR 1956981, 10.4064/aa107-1-1
.

Files

Files Size Format View
CzechMathJ_62-2012-4_9.pdf 244.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo