Previous |  Up |  Next

Article

Title: On the dimension of the solution set to the homogeneous linear functional differential equation of the first order (English)
Author: Domoshnitsky, Alexander
Author: Hakl, Robert
Author: Půža, Bedřich
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 4
Year: 2012
Pages: 1033-1053
Summary lang: English
.
Category: math
.
Summary: Consider the homogeneous equation $$ u'(t)=\ell (u)(t)\qquad \mbox {for a.e. } t\in [a,b] $$ where $\ell \colon C([a,b];\Bbb R)\to L([a,b];\Bbb R)$ is a linear bounded operator. The efficient conditions guaranteeing that the solution set to the equation considered is one-dimensional, generated by a positive monotone function, are established. The results obtained are applied to get new efficient conditions sufficient for the solvability of a class of boundary value problems for first order linear functional differential equations. (English)
Keyword: functional differential equation
Keyword: boundary value problem
Keyword: differential inequality
Keyword: solution set
MSC: 34K06
MSC: 34K10
idZBL: Zbl 1274.34184
idMR: MR3010255
DOI: 10.1007/s10587-012-0062-1
.
Date available: 2012-11-10T21:40:36Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143043
.
Reference: [1] Azbelev, N. V., Maksimov, V. P., Rakhmatullina, L. F.: Introduction to the Theory of Functional-Differential Equations.Russian. English summary Moskva: Nauka (1991). Zbl 0725.34071, MR 1144998
Reference: [2] Bravyi, E., Hakl, R., Lomtatidze, A.: Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations.Czech. Math. J. 52 (2002), 513-530. Zbl 1023.34055, MR 1923257, 10.1023/A:1021767411094
Reference: [3] Domoshnitsky, A.: Maximum principles and nonoscillation intervals for first order Volterra functional differential equations.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 15 (2008), 769-813. MR 2469306
Reference: [4] Domoshnitsky, A., Maghakyan, A., Shklyar, R.: Maximum principles and boundary value problems for first-order neutral functional differential equations.J. Inequal. Appl. (2009), 26 pp. Article ID 141959 Zbl 1181.34083, MR 2551738
Reference: [5] Hakl, R., Lomtatidze, A., Půža, B.: On nonnegative solutions of first order scalar functional differential equations.Mem. Differ. Equ. Math. Phys. 23 (2001), 51-84. Zbl 1009.34058, MR 1873258
Reference: [6] Hakl, R., Lomtatidze, A., Stavroulakis, I. P.: On a boundary value problem for scalar linear functional differential equations.Abstr. Appl. Anal. (2004), 45-67. Zbl 1073.34078, MR 2058792, 10.1155/S1085337504309061
Reference: [7] Hakl, R., Lomtatidze, A., Šremr, J.: Some Boundary Value Problems for First Order Scalar Functional Differential Equations.Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis. Mathematica 10. Brno: Masaryk University (2002). Zbl 1048.34004, MR 1909595
Reference: [8] Lomtatidze, A., Opluštil, Z.: On nonnegative solutions of a certain boundary value problem for first order linear functional differential equations.Electron. J. Qual. Theory Differ. Equ. Paper No. 16, 21 pp (2003). Zbl 1072.34066, MR 2170484
Reference: [9] Lomtatidze, A., Opluštil, Z., Šremr, J.: Nonpositive solutions to a certain functional differential inequality.Nonlinear Oscil. (N. Y.) 12 (2009), 474-509 MR 2641285, 10.1007/s11072-010-0090-4
Reference: [10] Lomtatidze, A., Opluštil, Z., Šremr, J.: On a nonlocal boundary value problem for first order linear functional differential equations.Mem. Differ. Equ. Math. Phys. 41 (2007), 69-85. Zbl 1215.34076, MR 2391943
Reference: [11] Lomtatidze, A., Opluštil, Z., Šremr, J.: Solvability conditions for a nonlocal boundary value problem for linear functional differential equations.Fasc. Math. 41 (2009), 81-96. Zbl 1207.34079, MR 2529035
Reference: [12] Opluštil, Z.: New solvability conditions for a non-local boundary value problem for nonlinear functional differential equations.Nonlin. Osc. 11 (2008), 384-406 MR 2512754, 10.1007/s11072-009-0038-8
Reference: [13] Opluštil, Z., Šremr, J.: On a non-local boundary value problem for linear functional differential equations.Electron. J. Qual. Theory Differ. Equ. (2009), Paper No. 36, 13 pp. Zbl 1183.34105, MR 2511289
Reference: [14] Rontó, A., Pylypenko, V., Dilna, D.: On the unique solvability of a non-local boundary value problem for linear functional differential equations.Math. Model. Anal. 13 (2008), 241-250. Zbl 1162.34053, MR 2418224, 10.3846/1392-6292.2008.13.241-250
.

Files

Files Size Format View
CzechMathJ_62-2012-4_12.pdf 290.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo