Previous |  Up |  Next

Article

Title: A note on prediction for discrete time series (English)
Author: Morvai, Gusztáv
Author: Weiss, Benjamin
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 4
Year: 2012
Pages: 809-823
Summary lang: English
.
Category: math
.
Summary: Let $\{X_n\}$ be a stationary and ergodic time series taking values from a finite or countably infinite set ${\cal X}$ and that $f(X)$ is a function of the process with finite second moment. Assume that the distribution of the process is otherwise unknown. We construct a sequence of stopping times $\lambda_n$ along which we will be able to estimate the conditional expectation $E(f(X_{\lambda_n+1})|X_0,\dots,X_{\lambda_n} )$ from the observations $(X_0,\dots,X_{\lambda_n})$ in a point wise consistent way for a restricted class of stationary and ergodic finite or countably infinite alphabet time series which includes among others all stationary and ergodic finitarily Markovian processes. If the stationary and ergodic process turns out to be finitarily Markovian (in particular, all stationary and ergodic Markov chains are included in this class) then $ \lim_{n\to \infty} \frac{n}{\lambda_n}>0$ almost surely. If the stationary and ergodic process turns out to possess finite entropy rate then $\lambda_n$ is upper bounded by a polynomial, eventually almost surely. (English)
Keyword: nonparametric estimation
Keyword: stationary processes
MSC: 60G10
MSC: 60G25
MSC: 62G05
idMR: MR3013400
.
Date available: 2012-11-10T22:10:55Z
Last updated: 2013-09-24
Stable URL: http://hdl.handle.net/10338.dmlcz/143061
.
Reference: [1] D. H. Bailey: Sequential Schemes for Classifying and Predicting Ergodic Processes..Ph.D. Thesis, Stanford University 1976. MR 2626644
Reference: [2] A. Berlinet, I. Vajda, E. C. van der Meulen: About the asymptotic accuracy of Barron density estimates..IEEE Trans. Inform. Theory 44 (1998), 3, 999-1009. Zbl 0952.62029, MR 1616679, 10.1109/18.669143
Reference: [3] K. L. Chung: A note on the ergodic theorem of information theory..Ann. Math. Statist. 32 (1961), 612-614. Zbl 0115.35503, MR 0131782, 10.1214/aoms/1177705069
Reference: [4] T. M. Cover, J. Thomas: Elements of Information Theory..Wiley, 1991. Zbl 1140.94001, MR 1122806
Reference: [5] I. Csiszár, P. Shields: The consistency of the BIC Markov order estimator..Ann. Statist. 28 (2000), 1601-1619. Zbl 1105.62311, MR 1835033, 10.1214/aos/1015957472
Reference: [6] I. Csiszár: Large-scale typicality of Markov sample paths and consistency of MDL order estimators..IEEE Trans. Inform. Theory 48 (2002), 1616-1628. Zbl 1060.62092, MR 1909476, 10.1109/TIT.2002.1003842
Reference: [7] G. A. Darbellay, I. Vajda: Estimation of the information by an adaptive partitioning of the observation space..{IEEE Trans. Inform. Theory 45 (1999), 4, 1315-1321.} Zbl 0957.94006, MR 1686274, 10.1109/18.761290
Reference: [8] J. Feistauerová, I. Vajda: Testing system entropy and prediction error probability..IEEE Trans. Systems Man Cybernet. 23 (1993), 5 1352-1358. 10.1109/21.260666
Reference: [9] L. Györfi, G. Morvai, S. Yakowitz: Limits to consistent on-line forecasting for ergodic time series..{IEEE Trans. Inform. Theory} 44 (1998), 886-892. Zbl 0899.62122, MR 1607704, 10.1109/18.661540
Reference: [10] L. Györfi, G. Morvai, I. Vajda: Information-theoretic methods in testing the goodness of fit..{In: Proc. 2000 IEEE Internat. Symposium on Information Theory}, ISIT 2000, New York and Sorrento, p. 28.
Reference: [11] W. Hoeffding: Probability inequalities for sums of bounded random variables..{J. Amer. Statist. Assoc.} 58 (1963), 13-30. Zbl 0127.10602, MR 0144363, 10.1080/01621459.1963.10500830
Reference: [12] S. Kalikow: Random Markov processes and uniform martingales..{Israel J. Math.} 71 (1990), 33-54. Zbl 0711.60041, MR 1074503, 10.1007/BF02807249
Reference: [13] M. Keane: Strongly mixing g-measures..{Invent. Math. } 16 (1972), 309-324. Zbl 0241.28014, MR 0310193, 10.1007/BF01425715
Reference: [14] H. Luschgy, L. A. Rukhin, I. Vajda: Adaptive tests for stochastic processes in the ergodic case..{Stochastic Process. Appl.} 45 (1993), 1, 45-59. Zbl 0770.62071, MR 1204860
Reference: [15] G. Morvai, I. Vajda: A survay on log-optimum portfolio selection..In: Second European Congress on Systems Science, Afcet, Paris 1993, pp. 936-944.
Reference: [16] G. Morvai, B. Weiss: Prediction for discrete time series..{Probab. Theory Related Fields} 132 (2005), 1-12. MR 2136864, 10.1007/s00440-004-0386-3
Reference: [17] G. Morvai, B. Weiss: Estimating the memory for finitarily Markovian processes..{ Ann. Inst. H. Poincaré Probab. Statist.} 43 (2007), 15-30. Zbl 1106.62094, MR 2288267, 10.1016/j.anihpb.2005.11.001
Reference: [18] B. Ya. Ryabko: Prediction of random sequences and universal coding..{Problems Inform. Transmission} 24 (1988), 87-96. Zbl 0666.94009, MR 0955983
Reference: [19] B. Ryabko: Compression-based methods for nonparametric prediction and estimation of some characteristics of time series..{IEEE Trans. Inform. Theory} 55 (2009), 9, 4309-4315. MR 2582884, 10.1109/TIT.2009.2025546
Reference: [20] I. Vajda, F. Österreicher: Existence, uniqueness and evaluation of log-optimal investment portfolio..{Kybernetika} 29 (1993), 2, 105-120. Zbl 0799.90013, MR 1227745
Reference: [21] I. Vajda, P. Harremoës: On the Bahadur-efficient testing of uniformity by means of entropy..IEEE Trans. Inform. Theory 54 (2008), 321-331. MR 2446756, 10.1109/TIT.2007.911155
.

Files

Files Size Format View
Kybernetika_48-2012-4_10.pdf 336.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo