Previous |  Up |  Next

Article

Title: On Equational Theory of Left Divisible Left Distributive Groupoids (English)
Author: Jedlička, Přemysl
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 51
Issue: 2
Year: 2012
Pages: 67-72
Summary lang: English
.
Category: math
.
Summary: It is an open question whether the variety generated by the left divisible left distributive groupoids coincides with the variety generated by the left distributive left quasigroups. In this paper we prove that every left divisible left distributive groupoid with the mapping $a\mapsto a^2$ surjective lies in the variety generated by the left distributive left quasigroups. (English)
Keyword: left distributivity
Keyword: left idempotency
Keyword: variety
MSC: 20N02
MSC: 20N05 08B15
idZBL: Zbl 06204931
idMR: MR3058874
.
Date available: 2012-11-26T10:18:32Z
Last updated: 2014-03-12
Stable URL: http://hdl.handle.net/10338.dmlcz/143068
.
Reference: [1] Barboriková, J.: Systémy automatického dokazování (Systems of automated reasoning). bachelor thesis, Charles University, Praha, 2009, (in Czech).
Reference: [2] Dehornoy, P.: Braids and Self-Distributivity. Progress in Mathematics 192, Birkhäuser, Basel, 2000. Zbl 0958.20033, MR 1778150
Reference: [3] Drápal, A., Kepka, T., Musílek, M.: Group Conjugation has Non-Trivial LD-Identities. Comment. Math. Univ. Carol. 35 (1994), 219–222. Zbl 0810.20053, MR 1286567
Reference: [4] Jedlička, P.: On left distributive left idempotent groupoids. Comm. Math. Univ. Carol. 46, 1 (2005), 15–20. Zbl 1106.20049, MR 2175855
Reference: [5] Joyce, D.: A Classifying Invariant of Knots, the Knot Quandle. J. Pure App. Alg. 23 (1982), 37–56. Zbl 0474.57003, MR 0638121, 10.1016/0022-4049(82)90077-9
Reference: [6] Kepka, T.: Notes On Left Distributive Groupoids. Acta Univ. Carolinae – Math. et Phys. 22, 2 (1981), 23–37. Zbl 0517.20048, MR 0654379
Reference: [7] Larue, D.: Left-Distributive Idempotent Algebras. Commun. Alg. 27, 5 (1999), 2003–2029. Zbl 0940.20070, MR 1683848, 10.1080/00927879908826547
Reference: [8] Stanovský, D.: On the equational theory of group conjugation. In: Contributions to General Algebra 15, Heyn, Klagenfurt, 2004, 177–185. Zbl 1076.20062, MR 2082381
.

Files

Files Size Format View
ActaOlom_51-2012-2_6.pdf 198.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo