Previous |  Up |  Next

Article

Title: Do Barbero-Immirzi connections exist in different dimensions and signatures? (English)
Author: Fatibene, L.
Author: Francaviglia, M.
Author: Garruto, S.
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 20
Issue: 1
Year: 2012
Pages: 3-11
Summary lang: English
.
Category: math
.
Summary: We shall show that no reductive splitting of the spin group exists in dimension $3\le m\le 20$ other than in dimension $m=4$. In dimension $4$ there are reductive splittings in any signature. Euclidean and Lorentzian signatures are reviewed in particular and signature $(2,2)$ is investigated explicitly in detail. Reductive splittings allow to define a global $\mbox{SU} (2)$-connection over spacetime which encodes in an weird way the holonomy of the standard spin connection. The standard Barbero-Immirzi (BI) connection used in LQG is then obtained by restriction to a spacelike slice. This mechanism provides a good control on globality and covariance of BI connection showing that in dimension other than $4$ one needs to provide some other mechanism to define the analogous of BI connection and control its globality. (English)
Keyword: Barbero-Immirzi connection
Keyword: global connections
Keyword: Loop Quantum Gravity
MSC: 53C07
idZBL: Zbl 06202714
idMR: MR3001627
.
Date available: 2012-11-27T16:25:15Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/143076
.
Reference: [1] Barbero, F.: Real Ashtekar variables for Lorentzian signature space-time.Phys. Rev. D, 51, 10, 1995, 5507-5510 MR 1338108, 10.1103/PhysRevD.51.5507
Reference: [2] Immirzi, G.: Quantum Gravity and Regge Calculus.Nucl. Phys. Proc. Suppl., 57, 1-3, 1997, 65-72 Zbl 0976.83504, MR 1480184, 10.1016/S0920-5632(97)00354-X
Reference: [3] Rovelli, C.: Quantum Gravity.2004, Cambridge University Press, Cambridge Zbl 1129.83322, MR 2106565
Reference: [4] Samuel, J.: Is Barbero's Hamiltonian Formulation a Gauge Theory of Lorentzian Gravity?.Classical Quant. Grav., 17, 2000, 141-148 Zbl 0981.83039, MR 1791768, 10.1088/0264-9381/17/20/101
Reference: [5] Thiemann, T.: Loop Quantum Gravity: An Inside View.Lecture Notes in Physics, 721, , 2007, 185-263, arXiv:hep-th/0608210 Zbl 1151.83019, MR 2397989
Reference: [6] Fatibene, L., Francaviglia, M., Rovelli, C.: On a Covariant Formulation of the Barberi-Immirzi Connection.Classical Quant. Grav., 24, 2007, 3055-3066, gr-qc/0702134 MR 2330908, 10.1088/0264-9381/24/11/017
Reference: [7] Fatibene, L., Francaviglia, M., Ferraris, M.: Inducing Barbero-Immirzi connections along SU(2) reductions of bundles on spacetime.Phys. Rev. D, 84, 6, 2011, 064035-064041 10.1103/PhysRevD.84.064035
Reference: [8] Berger, M.: Sur les groupes d'holonomie des vari?t?s ? connexion affine et des vari?t?s Riemanniennes.Bull. Soc. Math. France, 83, 1955, 279-330 MR 0079806
Reference: [9] Merkulov, S., Schwachh?fer, L.: Classi?cation of irreducible holonomies of torsion-free affine connections.Annals of Mathematics, 150, 1, 1999, 77-149, arXiv:math/9907206 MR 1715321, 10.2307/121098
Reference: [10] Kobayashi, S., Nomizu, K.: Foundations of differential geometry.1963, John Wiley & Sons, Inc., New York, USA Zbl 0119.37502
Reference: [11] Antonsen, F., Flagga, M.S.N.: Spacetime Topology (I) - Chirality and the Third Stiefel-Whitney Class.Int. J. Theor. Phys., 41, 2, 2002, 171-198 Zbl 0996.83010, MR 1888491, 10.1023/A:1014067520822
Reference: [12] Holst, S.: Barbero's Hamiltonian derived from a generalized Hilbert-Palatini action.Phys. Rev. D, 53, 10, 1996, 5966-5969 MR 1388932, 10.1103/PhysRevD.53.5966
Reference: [13] Fatibene, L., Francaviglia, M., Rovelli, C.: Spacetime Lagrangian Formulation of Barbero-Immirzi Gravity.Classical Quant. Grav., 24, 2007, 4207-4217, gr-qc/0706.1899 Zbl 1205.83027, MR 2348375, 10.1088/0264-9381/24/16/014
Reference: [14] Fatibene, L., Ferraris, M., Francaviglia, M.: New Cases of Universality Theorem for Gravitational Theories.Classical Quant. Grav., 27, 16, 2010, 165021. arXiv:1003.1617 MR 2660977, 10.1088/0264-9381/27/16/165021
Reference: [15] Alexandrov, S.: On choice of connection in loop quantum gravity.Phys. Rev. D, 65, 2001, 024011-024018 MR 1892140, 10.1103/PhysRevD.65.024011
Reference: [16] Alexandrov, S., Livine, E.R.: $SU(2)$ loop quantum gravity seen from covariant theory.Phys. Rev. D, 67, 4, 2003, 044009-044024 MR 1975984, 10.1103/PhysRevD.67.044009
Reference: [17] Bodendorfer, N., Thiemann, T., Thurn, A.: New Variables for Classical and Quantum Gravity in all Dimensions III. Quantum Theory.arXiv:1105.3705v1 [gr-qc]
Reference: [18] Nieto, J.A.: Canonical Gravity in Two Time and Two Space Dimensions.arXiv:1107.0718v3 [gr-qc]
Reference: [19] Ferraris, M., Francaviglia, M., Gatto, L.: Reducibility of $G$-invariant Linear Connections in Principal $G$-bundles.Colloq. Math. Soc. J. B., 56 Differential Geometry, 1989, 231-252 MR 1211660
Reference: [20] Godina, M., Matteucci, P.: Reductive $G$-structures and Lie derivatives.Journal of Geometry and Physics, 47, 2003, 66-86 Zbl 1035.53035, MR 1985484, 10.1016/S0393-0440(02)00174-2
Reference: [21] Fatibene, L., Francaviglia, M.: Natural and gauge natural formalism for classical field theories. A geometric perspective including spinors and gauge theories.2003, Kluwer Academic Publishers, Dordrecht Zbl 1138.81303, MR 2039451
Reference: [22] Chu, K., Farel, C., Fee, G., McLenaghan, R.: Fields Inst. Commun. 15.(1997) 195 MR 1463205
.

Files

Files Size Format View
ActaOstrav_20-2012-1_2.pdf 407.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo