Title:
|
On the inverse variational problem in nonholonomic mechanics (English) |
Author:
|
Rossi, Olga |
Author:
|
Musilová, Jana |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 |
Volume:
|
20 |
Issue:
|
1 |
Year:
|
2012 |
Pages:
|
41-62 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The inverse problem of the calculus of variations in a nonholonomic setting is studied. The concept of constraint variationality is introduced on the basis of a recently discovered nonholonomic variational principle. Variational properties of first order mechanical systems with general nonholonomic constraints are studied. It is shown that constraint variationality is equivalent with the existence of a closed representative in the class of 2-forms determining the nonholonomic system. Together with the recently found constraint Helmholtz conditions this result completes basic geometric properties of constraint variational systems. A few examples of constraint variational systems are discussed. (English) |
Keyword:
|
inverse problem of the calculus of variations |
Keyword:
|
Helmholtz conditions |
Keyword:
|
nonholonomic constraints |
Keyword:
|
the nonholonomic variational principle |
Keyword:
|
constraint Euler-Lagrange equations |
Keyword:
|
constraint Helmholtz conditions |
Keyword:
|
constraint Lagrangian |
Keyword:
|
constraint ballistic motion |
Keyword:
|
relativistic particle |
MSC:
|
49N45 |
MSC:
|
58E30 |
MSC:
|
70F25 |
idZBL:
|
Zbl 06202718 |
idMR:
|
MR3001631 |
. |
Date available:
|
2012-11-27T16:30:27Z |
Last updated:
|
2013-10-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143080 |
. |
Reference:
|
[1] Bloch, A.M., Mestdag, O.E. Fernandez and T.: Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations.Reports on Math. Phys., 63, 2009, 225-249 MR 2519467, 10.1016/S0034-4877(09)90001-5 |
Reference:
|
[2] Chetaev, N.G.: On the Gauss principle.Izv. Kazan. Fiz.-Mat. Obsc., 6, 1932–33, 323-326, (in Russian). |
Reference:
|
[3] Helmholtz, H.: Ueber die physikalische Bedeutung des Prinzips der kleinsten Wirkung.J. für die reine u. angewandte Math., 100, 1887, 137-166 |
Reference:
|
[4] Krupková, O.: Mechanical systems with non-holonomic constraints.J. Math. Phys., 38, 10, 1997, 5098-5126 MR 1471916, 10.1063/1.532196 |
Reference:
|
[5] Krupková, O.: Recent results in the geometry of constrained systems.Reports on Math. Phys., 49, 2002, 269-278 Zbl 1018.37041, MR 1915806, 10.1016/S0034-4877(02)80025-8 |
Reference:
|
[6] Krupková, O.: The nonholonomic variational principle.J. Phys. A: Math. Theor., 42, 2009, 185201. Zbl 1198.70008, MR 2591195, 10.1088/1751-8113/42/18/185201 |
Reference:
|
[7] Krupková, O.: Geometric mechanics on nonholonomic submanifolds.Communications in Mathematics, 18, 1, 2010, 51-77 Zbl 1248.70018, MR 2848506 |
Reference:
|
[8] Krupková, O., Musilová, J.: The relativistic particle as a mechanical system with non-holonomic constraints.J. Phys. A.: Math. Gen., 34, 2001, 3859-3875 MR 1840850, 10.1088/0305-4470/34/18/313 |
Reference:
|
[9] Krupková, O., Musilová, J.: Nonholonomic variational systems.Reports on Math. Phys., 55, 2005, 211-220 Zbl 1134.37356, MR 2139585, 10.1016/S0034-4877(05)80028-X |
Reference:
|
[10] Krupková, O., Volná, J., Volný, P.: Constrained Lepage forms.In: Differential Geometry and its Applications, Proc. 10th Int. Conf. on Diff. Geom. and Appl., Olomouc, August 2007 (World Scientific, Singapore, 2008) 627--633 Zbl 1167.58009, MR 2462828 |
Reference:
|
[11] Massa, E., Pagani, E.: Classical mechanic of non-holonomic systems: a geometric approach.Ann. Inst. Henry Poincaré, 66, 1997, 1-36 MR 1434114 |
Reference:
|
[12] Morando, P., Vignolo, S.: A geometric approach to constrained mechanical systems, symmetries and inverse problems.J. Phys. A.: Math. Gen., 31, 1998, 8233-8245 Zbl 0940.70008, MR 1651497, 10.1088/0305-4470/31/40/015 |
Reference:
|
[13] Sarlet, W.: A direct geometrical construction of the dynamics of non-holonomic Lagrangian systems.Extracta Mathematicae, 11, 1996, 202-212 MR 1424757 |
Reference:
|
[14] Swaczyna, M., Volný, P.: Uniform projectile motion as a nonholonomic system with a nonlinear constraint.Int. J. of Non-Linear Mechanics. Submitted |
Reference:
|
[15] Tonti, E.: Variational formulation of nonlinear differential equations I, II.Bull. Acad. Roy. Belg. Cl. Sci., 55, 1969, 137-165, 262--278 MR 0256235 |
Reference:
|
[16] Vainberg, M.M.: Variational methods in the theory of nonlinear operators.1959, GITL, Moscow, (in Russian). |
. |