Previous |  Up |  Next

Article

Keywords:
fixed point; large contraction; periodic solution; positive solution
Summary:
We study the existence and positivity of solutions of a highly nonlinear periodic differential equation. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ a modification of Krasnoselskii’s fixed point theorem introduced by T. A. Burton ([4], Theorem 3) to show the existence and positivity of solutions of the equation.
References:
[1] Burton, T. A.: Integral equations, implicit relations and fixed points. Proc. Amer. Math. Soc. 124 (1996), 2383–2390. DOI 10.1090/S0002-9939-96-03533-2 | MR 1346965
[2] Burton, T. A.: A fixed point theorem of Krasnoselskii. Appl. Math. Lett. 11 (1998), 85–88. DOI 10.1016/S0893-9659(97)00138-9 | MR 1490385 | Zbl 1127.47318
[3] Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem. Nonlinear Stud. 9 (2002), 181–190. MR 1898587 | Zbl 1084.47522
[4] Burton, T.A.: Stability by fixed point theory for functional differential equations. Mineola, NY, Dover Publications, Inc., 2006. MR 2281958 | Zbl 1160.34001
[5] Chen, F. D.: Positive periodic solutions of neutral Lotka-Volterra system with feedback control. Appl. Math. Comput. 162 (3) (2005), 1279–1302. DOI 10.1016/j.amc.2004.03.009 | MR 2113969 | Zbl 1125.93031
[6] Chen, F. D., Shi, J. L.: Periodicity in a nonlinear predator-prey system with state dependent delays. Acta Math. Appl. Sinica (English Ser.) 21 (1) (2005), 49–60. DOI 10.1007/s10255-005-0214-2 | MR 2123604 | Zbl 1096.34050
[7] Curtain, R. F., Pritchard, A. J.: Functional analysis in modern applied mathematics. Mathematics in Science and Engineering, Vol. 132. London–New York, Academic Press, 1977. MR 0479787 | Zbl 0448.46002
[8] Elkadeky, W. K., El-Sayed, A. M.: Caratheodory theorem for a nonlocal problem of the differential equation $x^{\prime }=f(t,x^{\prime })$. Alex. J. Math. 1 (2) (2010), 8–14.
[9] Fan, M., Wang, K.: Global periodic solutions of a generalized $n$-species Gilpin–Ayalacompetition model. Comput. Math. Appl. 40 (10–11) (2000), 1141–1151. DOI 10.1016/S0898-1221(00)00228-5 | MR 1784658
[10] Hafsia, D., Ahcene, D.: Periodic solutions for nonlinear differential equation with functional delay. Georgian Math. J. 15 (4) (2008), 635–642. MR 2494962 | Zbl 1171.47061
[11] Hafsia, D., Ahcene, D.: Existence of periodic solutions for neutral nonlinear differential equations with variable delay. Electron. J. Differential Equations 127 (2010), 1–8. MR 2685037 | Zbl 1203.34110
[12] Kaufmann, E. R.: A nonlinear neutral periodic differential equation. Electron. J. Differential Equations 88 (2010), 1–8. MR 2680291 | Zbl 1200.34094
[13] Kun, L. Y.: Periodic solution of a periodic neutral delay equation. J. Math. Anal. Appl. 214 (1997), 11–21. DOI 10.1006/jmaa.1997.5576 | MR 1645495 | Zbl 0894.34075
[14] Raffoul, Y. N.: Periodic solutions for neutral nonlinear differential equations with functional delays. Electron. J. Differential Equations 102 (2003), 1–7. MR 2011575
[15] Raffoul, Y. N.: Positive periodic solutions in neutral nonlinear differential equations. Electron. J. Qual. Theory Differ. Equ. 16 (2007), 1–10. MR 2336604 | Zbl 1182.34091
Partner of
EuDML logo