[3] Burton, T. A.:
Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem. Nonlinear Stud. 9 (2002), 181–190.
MR 1898587 |
Zbl 1084.47522
[4] Burton, T.A.:
Stability by fixed point theory for functional differential equations. Mineola, NY, Dover Publications, Inc., 2006.
MR 2281958 |
Zbl 1160.34001
[7] Curtain, R. F., Pritchard, A. J.:
Functional analysis in modern applied mathematics. Mathematics in Science and Engineering, Vol. 132. London–New York, Academic Press, 1977.
MR 0479787 |
Zbl 0448.46002
[8] Elkadeky, W. K., El-Sayed, A. M.: Caratheodory theorem for a nonlocal problem of the differential equation $x^{\prime }=f(t,x^{\prime })$. Alex. J. Math. 1 (2) (2010), 8–14.
[10] Hafsia, D., Ahcene, D.:
Periodic solutions for nonlinear differential equation with functional delay. Georgian Math. J. 15 (4) (2008), 635–642.
MR 2494962 |
Zbl 1171.47061
[11] Hafsia, D., Ahcene, D.:
Existence of periodic solutions for neutral nonlinear differential equations with variable delay. Electron. J. Differential Equations 127 (2010), 1–8.
MR 2685037 |
Zbl 1203.34110
[12] Kaufmann, E. R.:
A nonlinear neutral periodic differential equation. Electron. J. Differential Equations 88 (2010), 1–8.
MR 2680291 |
Zbl 1200.34094
[14] Raffoul, Y. N.:
Periodic solutions for neutral nonlinear differential equations with functional delays. Electron. J. Differential Equations 102 (2003), 1–7.
MR 2011575
[15] Raffoul, Y. N.:
Positive periodic solutions in neutral nonlinear differential equations. Electron. J. Qual. Theory Differ. Equ. 16 (2007), 1–10.
MR 2336604 |
Zbl 1182.34091