[2] Calvo, I.: Poisson sigma models on surfaces with boundary: Classical and quantum aspects. Ph.D. thesis, University of Zaragoza, 2006.
[3] Calvo, I., Falceto, F., García–Álvarez, D.:
Topological Poisson sigma models on Poisson–Lie groups. JHEP, 0310 (033), 2003.
MR 2030758
[4] Dufour, J–P., Zung, N. T.:
Poisson Structures and Their Normal Forms. Progr. Math., vol. 242, Birkhäuser Verlag, 2005.
MR 2178041 |
Zbl 1082.53078
[5] Klimčík, C.: Yang–Baxter $\sigma $–models and $d{S}/{A}d{S}$ T–Duality. JHEP, 0212 (051), 2002.
[6] Klimčík, C., Ševera, P.:
T–duality and the moment map. hep-th/9610198.
Zbl 0924.58132
[7] Klimčík, C., Ševera, P.: Poisson–Lie T–duality and loops of Drinfeld doubles. Phys. Lett. B 375 (1996), 65–71.
[8] Lu, J., Weinstein, A.:
Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Differential Geom. 31 (1990), 501–526.
MR 1037412 |
Zbl 0673.58018
[10] Schaller, P., Strobl, T.: Poisson–Sigma–Models: A generalization of 2–D gravity Yang–Mills–systems. hep-th/9411163.
[13] Vaisman, I.:
Lectures on the Geometry of Poisson Manifolds. Progr. Math., vol. 118, Birkhäuser Verlag, 2005.
MR 1269545