Previous |  Up |  Next

Article

Title: Semidefinite characterisation of invariant measures for one-dimensional discrete dynamical systems (English)
Author: Henrion, Didier
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 6
Year: 2012
Pages: 1089-1099
Summary lang: English
.
Category: math
.
Summary: Using recent results on measure theory and algebraic geometry, we show how semidefinite programming can be used to construct invariant measures of one-dimensional discrete dynamical systems (iterated maps on a real interval). In particular we show that both discrete measures (corresponding to finite cycles) and continuous measures (corresponding to chaotic behavior) can be recovered using standard software. (English)
Keyword: dynamical systems
Keyword: invariant measures
Keyword: semidefinite programming
MSC: 37-04
MSC: 37L40
MSC: 90C22
idMR: MR3052875
.
Date available: 2013-01-10T09:15:31Z
Last updated: 2013-09-24
Stable URL: http://hdl.handle.net/10338.dmlcz/143120
.
Reference: [1] Alligood, K. T., Sauer, T. D., Yorke, J. A.: Chaos - An Introduction to Dynamical Systems..Springer, 1997. Zbl 0867.58043, MR 1418166
Reference: [2] Barkley, D., Kevrekidis, I. G., Stuart, A. M.: The moment map: nonlinear dynamics of density evolution via a few moments..SIAM J. Appl. Dynam. Systems 5 (2006), 3, 403-434. Zbl 1210.65010, MR 2255449, 10.1137/050638667
Reference: [3] Boyd, S., Vandenberghe, L.: Convex Optimization..Cambridge Univ. Press, 2005. Zbl 1058.90049, MR 2061575
Reference: [4] Campbell, D., Crutchfield, J., Farmer, D., Jen, E.: Experimental mathematics: the role of computation in nonlinear science..Comm. ACM 28 (1985), 4, 374-384. MR 0789993, 10.1145/3341.3345
Reference: [5] Dellnitz, M., Junge, O.: On the approximation of complicated dynamical behavior..SIAM J. Numer. Anal. 36 (1999), 2, 491-515. Zbl 0916.58021, MR 1668207, 10.1137/S0036142996313002
Reference: [6] Diaconis, P., Freedman, D.: Iterated random functions..SIAM Rev. 41 (1999), 1, 45-76. Zbl 0926.60056, MR 1669737, 10.1137/S0036144598338446
Reference: [7] Góra, P., Boyarsky, A.: Why computers like Lebesgue measure..Comput. Math. Appl. 16 (1988), 4, 321-329. Zbl 0668.28008, MR 0959419, 10.1016/0898-1221(88)90148-4
Reference: [8] Góra, P., Boyarsky, A., Islam, M. D. S., Bahsoun, W.: Absolutely continuous invariant measures that cannot be observed experimentally..SIAM J. Appl. Dynam. Systems 5 (2006), 1, 84-90. Zbl 1090.37041, MR 2217130, 10.1137/040606478
Reference: [9] Hernández-Lerma, O., Lasserre, J. B.: Markov Chains and Invariant Probabilities..Birkhauser, 2003. Zbl 1036.60003, MR 1974383
Reference: [10] Lasota, A., Mackey, M. C.: Probabilistic Properties of Deterministic Systems..Cambridge Univ. Press, 1985. Zbl 0606.58002, MR 0832868
Reference: [11] Lasserre, J. B.: Global optimization with polynomials and the problem of moments..SIAM J. Optim. 11 (2001), 3, 796-817. Zbl 1010.90061, MR 1814045, 10.1137/S1052623400366802
Reference: [12] Lasserre, J. B., Henrion, D., Prieur, C., Trélat, E.: Nonlinear optimal control via occupation measures and LMI relaxations..SIAM J. Control Optim. 47 (2008), 4, 1643-1666. Zbl 1188.90193, MR 2421324, 10.1137/070685051
Reference: [13] Peyrl, H., Parrilo, P. A.: A theorem of the alternative for SOS Lyapunov functions..In: Proc. IEEE Conference on Decision and Control, 2007.
Reference: [14] Rantzer, A.: A dual to Lyapunov's stability theorem..Systems Control Lett. 42 (2001), 3, 161-168. Zbl 0974.93058, MR 2007046, 10.1016/S0167-6911(00)00087-6
Reference: [15] Vaidya, U., Mehta, P. G.: Lyapunov measure for almost everywhere stability..IEEE Trans. Automat. Control 53 (2008), 1, 307-323. MR 2391706, 10.1109/TAC.2007.914955
.

Files

Files Size Format View
Kybernetika_48-2012-6_2.pdf 314.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo