Previous |  Up |  Next

Article

Title: Finite-time consensus problem for multiple non-holonomic mobile agents (English)
Author: Wang, Jiankui
Author: Qiu, Zhihui
Author: Zhang, Guoshan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 6
Year: 2012
Pages: 1180-1193
Summary lang: English
.
Category: math
.
Summary: In this paper, the problem of finite time consensus is discussed for multiple non-holonomic mobile agents. The objective is to design a distributed finite time control law such that the controlled multiple non-holonomic mobile agents can reach consensus within any given finite settling time. We propose a novel switching control strategy with the help of time-rescalling technique and graph theory. The numerical simulations are presented to show the effectiveness of the method. (English)
Keyword: finite time consensus
Keyword: nonholonomic system
Keyword: time-rescaling
Keyword: mobile agents
MSC: 93D15
MSC: 93D21
idMR: MR3052880
.
Date available: 2013-01-10T09:25:54Z
Last updated: 2013-09-24
Stable URL: http://hdl.handle.net/10338.dmlcz/143125
.
Reference: [1] Bhat, S. P., Bernstein, D. S.: Continuous finite-time stabilization of the translational and rotational double integrators..IEEE Trans. Automat. Control 43 (1998), 5, 678-682. Zbl 0925.93821, MR 1618028, 10.1109/9.668834
Reference: [2] Bhat, S. P., Bernstein, D. S.: Geometric homogeneity with applications to finite-time stability..Math. Control, Signals, and Systems 17 (2005), 2, 101-127. Zbl 1110.34033, MR 2150956, 10.1007/s00498-005-0151-x
Reference: [3] Dong, W. J., Farrell, J. A.: Cooperative control of multiple nonholonomic mobile agents..IEEE Trans. Automat. Control 53 (2008), 6, 1434-1448. MR 2451233, 10.1109/TAC.2008.925852
Reference: [4] Du, H., Li, S., Qian, C.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization..IEEE Trans. Automat. Control 56 (2011), 11, 2711-2717. MR 2884015, 10.1109/TAC.2011.2159419
Reference: [5] Du, H., Li, S., Lin, X.: Finite-time formation control of multi-agent systems via dynamic output feedback..Internat. J. Robust and Nonlinear Control (2012), published online.
Reference: [6] Feng, X., Long, W.: Reaching agreement in finite time via continuous local state feedback..In: Chinese Control Conference 2007, pp. 711-715.
Reference: [7] Hong, Y., Wang, J.: Stabilization of uncertain chained form systems within finite settling time..IEEE Trans. Automat. Control 50 (2005), 9, 1379-1384. MR 2164439, 10.1109/TAC.2005.854620
Reference: [8] Hong, Y., Hu, J. P., Gao, L. X.: Tracking control for multi-agent consensus with an active leader and variable topology..Automatica 42 (2006), 7, 1177-1182. Zbl 1117.93300, MR 2230987, 10.1016/j.automatica.2006.02.013
Reference: [9] Hong, Y., Jiang, Z., Feng, G.: Finite-time input-to-state stability and applications to finite-time control design..SIAM J. Control Optim. 48 (2010), 7, 4395-4418. Zbl 1210.93066, MR 2665472, 10.1137/070712043
Reference: [10] Justh, E. W., Krishnaprasad, P. S.: Equilibrium and steering laws for planar formations..Systems Control Lett. 52 (2004), 1, 25-38. MR 2050451, 10.1016/j.sysconle.2003.10.004
Reference: [11] Beard, R. W., Lawton, J., Young, B. J.: A decentralized approach to formation maneuvers..IEEE Trans. Robotics Automat. 19 (2003), 6, 933-941. 10.1109/TRA.2003.819598
Reference: [12] Li, S., Liu, H., Ding, S.: A speed control for a pmsm using finite-time feedback control and disturbance compensation..Trans. Inst. Measurement and Control 32 (2010), 2, 170-187. 10.1177/0142331209339860
Reference: [13] Li, S., Du, H., Lin, X.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics..Automatica 47 (2011), 8, 1706-1712. Zbl 1226.93014, MR 2886774, 10.1016/j.automatica.2011.02.045
Reference: [14] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays..IEEE Trans. Automat. Control 49 (2004), 9, 1520-1533. MR 2086916, 10.1109/TAC.2004.834113
Reference: [15] Wang, J., Zhang, G., Li, H.: Adaptive control of uncertain nonholonomic systems in finite time..Kybernetika 45 (2009), 5, 809-824. Zbl 1190.93086, MR 2599114
Reference: [16] Wang, J., Zhao, Y., Song, X., Zhang, G.: Semi-global robust finite time stabilization of non-holonomic chained form systems with perturbed terms..In: 8th World Congress on Intelligent Control and Automation (WCICA) 2010, pp. 3662-3667.
Reference: [17] Wang, X. L., Hong, Y.: Finite-time consensus for multi-agent networks with second-order agent dynamics..In: Proc. 17th World Congress The International Federation of Automatic Control (2008), pp. 15185-15190.
.

Files

Files Size Format View
Kybernetika_48-2012-6_7.pdf 381.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo