Previous |  Up |  Next

Article

Title: Novel Method for Generalized Stability Analysis of Nonlinear Impulsive Evolution Equations (English)
Author: Wang, JinRong
Author: Zhou, Yong
Author: Wei, Wei
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 6
Year: 2012
Pages: 1211-1228
Summary lang: English
.
Category: math
.
Summary: In this paper, we discuss some generalized stability of solutions to a class of nonlinear impulsive evolution equations in the certain piecewise essentially bounded functions space. Firstly, stabilization of solutions to nonlinear impulsive evolution equations are studied by means of fixed point methods at an appropriate decay rate. Secondly, stable manifolds for the associated singular perturbation problems with impulses are compared with each other. Finally, an example on initial boundary value problem for impulsive parabolic equations is illustrated to our theory results. (English)
Keyword: impulsive evolution equations
Keyword: stabilization
Keyword: stable manifolds
Keyword: singularly perturbed problems
MSC: 34G20
MSC: 35B40
MSC: 35K20
idMR: MR3052882
.
Date available: 2013-01-10T09:31:00Z
Last updated: 2013-09-24
Stable URL: http://hdl.handle.net/10338.dmlcz/143127
.
Reference: [1] Abada, N., Benchohra, M., Hammouche, H.: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions..J. Differential Equations 246 (2009), 3834-3863. Zbl 1171.34052, MR 2514728, 10.1016/j.jde.2009.03.004
Reference: [2] Ahmed, N. U.: Existence of optimal controls for a general class of impulsive systems on Banach space..SIAM J. Control Optim. 42 (2003), 669-685. MR 1982287, 10.1137/S0363012901391299
Reference: [3] Ahmed, N. U., Teo, K. L., Hou, S. H.: Nonlinear impulsive systems on infinite dimensional spaces..Nonlinear Anal. 54 (2003), 907-925. Zbl 1030.34056, MR 1992511, 10.1016/S0362-546X(03)00117-2
Reference: [4] Benchohra, M., Henderson, J., Ntouyas, S. K.: Impulsive differential equations and inclusions..In: Contemporary Mathematics and Its Applications, Vol. 2, Hindawi Publishing Corporation, New York 2006. Zbl 1130.34003, MR 2322133
Reference: [5] Bounit, H., Hammouri, H.: Stabilization of infinite-dimensional semilinear systems with dissipative drift..Appl. Math. Optim. 37 (1998), 225-242. Zbl 1041.93553, MR 1489316, 10.1007/s002459900075
Reference: [6] Chang, Y. K., Nieto, J. J.: Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators..Numer. Funct. Anal. Optim. 30 (2009), 227-244. Zbl 1176.34096, MR 2514215, 10.1080/01630560902841146
Reference: [7] Dvirnyĭ, A. I., Slyn'ko, V. I.: Stability of solutions to impulsive differential equations in critical cases..Sibirsk. Mat. Zh. 52 (2011), 70-80. MR 2810251
Reference: [8] Fan, Z., Li, G.: Existence results for semilinear differential equations with nonlocal and impulsive conditions..J. Funct. Anal. 258 (2010), 1709-1727. Zbl 1193.35099, MR 2566317, 10.1016/j.jfa.2009.10.023
Reference: [9] Hernández, E., Rabello, M., Henríquez, H. R.: Existence of solutions for impulsive partial neutral functional differential equations..J. Math. Anal. Appl. 331 (2007), 1135-1158. MR 2313705, 10.1016/j.jmaa.2006.09.043
Reference: [10] Koliha, J. J., Straškraba, I.: Stability in nonlinear evolution problems by means of fixed point theorem..Comment. Math. Univ. Carolin. 38 (1997), 37-59. MR 1455469
Reference: [11] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations..World Scientific, Singapore - London 1989. Zbl 0719.34002, MR 1082551
Reference: [12] Liang, J., Liu, J. H., Xiao, T.-J.: Nonlocal impulsive problems for nonlinear differential equations in Banach spaces..Math. Comput. Model. 49 (2009), 798-804. Zbl 1173.34048, MR 2483682, 10.1016/j.mcm.2008.05.046
Reference: [13] Liu, J.: Nonlinear impulsive evolution equations..Dynamic Contin. Discrete Impuls. Syst. 6 (1999), 77-85. Zbl 0932.34067, MR 1679758
Reference: [14] Lü, J., Chen, G.: Generating multiscroll Chaotic attractors: Theories, Methods and Applications..Internat. J. Bifurcation and Chaos 16 (2006), 775-858. MR 2234259, 10.1142/S0218127406015179
Reference: [15] Lü, J., Han, F., Yu, X., Chen, G.: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method..Automatica 40 (2004), 1677-1687. Zbl 1162.93353, MR 2155461, 10.1016/j.automatica.2004.06.001
Reference: [16] Wang, J., Dong, X., Zhou, Y.: Existence, attractiveness and stability of solutions for quadratic Urysohn fractional integral equations..Comm. Nonlinear Sci. Numer. Simul. 17 (2012), 545-554. MR 2834413, 10.1016/j.cnsns.2011.05.034
Reference: [17] Wang, J., Dong, X., Zhou, Y.: Analysis of nonlinear integral equations with Erdélyi-Kober fractional operator..Comm. Nonlinear Sci. Numer. Simul. 17 (2012), 3129-3139. MR 2834413, 10.1016/j.cnsns.2011.12.002
Reference: [18] Wang, J., Wei, W.: A class of nonlocal impulsive problems for integrodifferential equations in Banach spaces..Results Math. 58 (2010), 379-397. Zbl 1209.34095, MR 2728164, 10.1007/s00025-010-0057-x
Reference: [19] Wei, W., Xiang, X., Peng, Y.: Nonlinear impulsive integro-differential equation of mixed type and optimal controls..Optimization 55 (2006), 141-156. MR 2221729, 10.1080/02331930500530401
Reference: [20] Wang, J., Xiang, X., Peng, Y.: Periodic solutions of semilinear impulsive periodic system on Banach space..Nonlinear Anal. 71 (2009), e1344-e1353. Zbl 1238.34079, MR 2671921, 10.1016/j.na.2009.01.139
Reference: [21] Wei, W., Hou, S., Teo, K. L.: On a class of strongly nonlinear impulsive differential equation with time delay..Nonlinear Dyn. Syst. Theory 6 (2006), 281-293. Zbl 1114.47067, MR 2264177
Reference: [22] Xiang, X., Wei, W., Jiang, Y.: Strongly nonlinear impulsive system and necessary conditions of optimality..Dyn. Cont. Discrete Impuls. Syst. 12 (2005), 811-824. Zbl 1081.49027, MR 2178682
Reference: [23] Xu, D., Yang, Z., Yang, Z.: Exponential stability of nonlinear impulsive neutral differential equations with delays..Nonlinear Anal. 67 (2007), 1426-1439. Zbl 1122.34063, MR 2323290, 10.1016/j.na.2006.07.043
Reference: [24] Yang, T.: Impulsive Control Theory..Springer-Verlag, Berlin - Heidelberg 2001. Zbl 0996.93003, MR 1850661
Reference: [25] Yang, Z., Xu, D.: Stability analysis and design of impulsive control system with time delay..IEEE Trans. Automat. Control 52 (2007), 1148-1154. MR 2342720, 10.1109/TAC.2007.902748
Reference: [26] Yu, X., Xiang, X., Wei, W.: Solution bundle for class of impulsive differential inclusions on Banach spaces..J. Math. Anal. Appl. 327 (2007), 220-232. MR 2277406, 10.1016/j.jmaa.2006.03.075
Reference: [27] Zhang, Y., Sun, J.: Strict stability of impulsive functional differential equations..J. Math. Anal. Appl. 301 (2005), 237-248. Zbl 1068.34073, MR 2105932, 10.1016/j.jmaa.2004.07.018
.

Files

Files Size Format View
Kybernetika_48-2012-6_9.pdf 326.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo