Previous |  Up |  Next

Article

Title: Associative and Lie deformations of Poisson algebras (English)
Author: Remm, Elisabeth
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 20
Issue: 2
Year: 2012
Pages: 117-136
Summary lang: English
.
Category: math
.
Summary: Considering a Poisson algebra as a nonassociative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this nonassociative algebra. We give a natural interpretation of deformations which preserve the underlying associative structure and of deformations which preserve the underlying Lie algebra and we compare the associated cohomologies with the Poisson cohomology parametrizing the general deformations of Poisson algebras. (English)
Keyword: Poisson algebras
Keyword: deformations
Keyword: operads
Keyword: cohomology
MSC: 17B63
MSC: 17Dxx
MSC: 53Dxx
idZBL: Zbl 06165039
idMR: MR3032808
.
Date available: 2013-01-28T10:50:06Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/143143
.
Reference: [1] Doubek, M., Markl, M., Zima, P.: Deformation theory (lecture notes).Arch. Math. (Brno), 43, 5, 2007, 333-371, Zbl 1199.13015, MR 2381782
Reference: [2] Dufour, J.-P.: Formes normales de structures de Poisson.Symplectic geometry and mathematical physics (Aix-en-Provence), 1990, 129-135, Progr. Math. 99, Birkhuser Boston, Boston, MA (1991). MR 1156537
Reference: [3] Godbillon, C.: Géométrie différentielle et mécanique analytique.1969, Hermann Editeurs. Collection Méthodes, MR 0242081
Reference: [4] Goze, M., Remm, E.: 2-dimensional algebras.Afr. J. Math. Phys., 10, 1, 2011, 81-91, Corrected version: arXiv:1205.1221 [math.RA]. MR 2845269
Reference: [5] Goze, M., Remm, E.: Contact structures on Lie algebras.2012, Preprint Mulhouse,
Reference: [6] Goze, M., Remm, E.: Valued deformations of algebras.J. Algebra Appl, 3, 4, 2004, 345-365, Zbl 1062.17010, MR 2114414, 10.1142/S0219498804000915
Reference: [7] Goze, M., Remm, E.: Poisson algebras in terms of nonassociative algebras.J. Algebra, 320, 1, 2008, 294-317, MR 2417990, 10.1016/j.jalgebra.2008.01.024
Reference: [8] Goze, N.: Poisson structures associated with rigid Lie algebras.Journal of Generalized Lie theory and Applications, 10, 2010,
Reference: [9] Goze, N., Remm, E.: Dimension theorem for free ternary partially associative algebras and applications.J. Algebra, 348, 2011, 14-36, MR 2852229, 10.1016/j.jalgebra.2011.09.011
Reference: [10] Kontsevich, M.: Deformation quantization of Poisson manifold I.arXiv:q-alg/9709040. MR 2062626
Reference: [11] Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. (French).J. Differential Geometry, 12, 2, 1977, 253-300, MR 0501133
Reference: [12] Loday, J.-L.: Algebraic operads.2011, Preprint IRMA Strasbourg,
Reference: [13] Markl, M., Remm, E.: Algebras with one operation including Poisson and other Lie-admissible algebras.J. Algebra, 299, 1, 2006, 171-189, Zbl 1101.18004, MR 2225770, 10.1016/j.jalgebra.2005.09.018
Reference: [14] Markl, M., Remm, E.: (Non-)Koszulness of operads for n-ary algebras, galgalim and other curiosities.arXiv:0907.1505.
Reference: [15] Markl, M., Shnider, S., Stasheff, J.: Operads in algebra, topology and physics.2002, Mathematical Surveys and Monographs, 96. American Mathematical Society, Providence, RI, Zbl 1017.18001, MR 1898414
Reference: [16] Pichereau, A.: Poisson (co)homology and isolated singularities.J. Algebra, 299, 2, 2006, 747-777, Zbl 1113.17009, MR 2228339, 10.1016/j.jalgebra.2005.10.029
Reference: [17] Remm, E.: On the NonKoszulity of ternary partially associative Operads.Proceedings of the Estonian Academy of Sciences, 59, 4, 2010, 355-363, MR 2752979
Reference: [18] Remm, E., Goze, M.: On algebras obtained by tensor product.J. Algebra, 327, 2011, 13-30, Zbl 1228.18007, MR 2746027, 10.1016/j.jalgebra.2010.10.035
Reference: [19] Skosyrskii, V. G.: Noncommutative Jordan algebras a under the condition that $A^{(+)}$ is associative.Translated from Sibirskii Mathematicheskii Zhurnal, 32, 6, 1991, 150-157, MR 1156755
Reference: [20] Vaisman, Izu: Lectures on the geometry of Poisson manifolds.1994, Progress in Mathematics 118, Birkäuser Verlag, Basel, viii+205 pp. Zbl 0810.53019, MR 1269545
.

Files

Files Size Format View
ActaOstrav_20-2012-2_5.pdf 565.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo