Title:
|
Shear flows of a new class of power-law fluids (English) |
Author:
|
Le Roux, Christiaan |
Author:
|
Rajagopal, Kumbakonam R. |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
58 |
Issue:
|
2 |
Year:
|
2013 |
Pages:
|
153-177 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider the flow of a class of incompressible fluids which are constitutively defined by the symmetric part of the velocity gradient being a function, which can be non-monotone, of the deviator of the stress tensor. These models are generalizations of the stress power-law models introduced and studied by J. Málek, V. Průša, K. R. Rajagopal: Generalizations of the Navier-Stokes fluid from a new perspective. Int. J. Eng. Sci. 48 (2010), 1907–1924. We discuss a potential application of the new models and then consider some simple boundary-value problems, namely steady planar Couette and Poiseuille flows with no-slip and slip boundary conditions. We show that these problems can have more than one solution and that the multiplicity of the solutions depends on the values of the model parameters as well as the choice of boundary conditions. (English) |
Keyword:
|
non-Newtonian fluid |
Keyword:
|
Couette flow |
Keyword:
|
Poiseuille flow |
Keyword:
|
slip boundary condition |
MSC:
|
35Q35 |
MSC:
|
76A05 |
MSC:
|
76D03 |
idZBL:
|
Zbl 1274.76039 |
idMR:
|
MR3034820 |
DOI:
|
10.1007/s10492-013-0008-4 |
. |
Date available:
|
2013-03-01T15:51:35Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143161 |
. |
Reference:
|
[1] Anand, M., Rajagopal, K., Rajagopal, K. R.: A model incorporating some of the mechanical and biomechanical factors underlying clot formation and dissolution in flowing blood.J. Theor. Med. 5 (2003), 183-218. MR 2158290, 10.1080/10273660412331317415 |
Reference:
|
[2] Anand, M., Rajagopal, K., Rajagopal, K. R.: A model for the formation and lysis of blood clots.Pathophysiology of Homeostasis and Thrombosis 34 (2005), 109-120. 10.1159/000089931 |
Reference:
|
[3] Burgers, J. M.: Mechanical considerations---model systems---phenomenological theories of relaxation and viscosity.In: First Report on Viscosity and Plasticity J. M. Burgers Nordemann Publishing Company New York (1935). |
Reference:
|
[4] Drazin, P. G., Reid, W. H.: Hydrodynamic Stability (2nd ed.).Cambridge University Press (Cambridge), (2004). MR 2098531 |
Reference:
|
[5] Lawson, J., Rajagopal, K.: Regulation of hemostatic system function by biochemical and mechanical factors.In: Modeling of Biological Materials F. Mollica, L. Preziosi, K. R. Rajagopal Birkhäuser Boston (2007), 179-210. MR 2341232 |
Reference:
|
[6] Málek, J., Průša, V., Rajagopal, K. R.: Generalizations of the Navier-Stokes fluid from a new perspective.Int. J. Eng. Sci. 48 (2010), 1907-1924. Zbl 1231.76073, MR 2778752, 10.1016/j.ijengsci.2010.06.013 |
Reference:
|
[7] Maxwell, J. C.: On the dynamical theory of gases.Philos. Trans. R. Soc. Lond. Ser. A 157 (1866), 26-78. |
Reference:
|
[8] Noll, W. A.: A new mathematical theory of simple materials.Arch. Ration. Mech. Anal. 48 (1972), 1-50. Zbl 0271.73006, MR 0445985, 10.1007/BF00253367 |
Reference:
|
[9] Oldroyd, J. G.: On the formulation of rheological equations of state.Proc. R. Soc. Lond. Ser. A 200 (1950), 523-541. Zbl 1157.76305, MR 0035192, 10.1098/rspa.1950.0035 |
Reference:
|
[10] Oldroyd, J. G.: Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids.Proc. R. Soc. Lond. Ser. A 245 (1958), 278-297. MR 0094085, 10.1098/rspa.1958.0083 |
Reference:
|
[11] Rajagopal, K. R.: On implicit constitutive theories.Appl. Math. 48 (2003), 279-319. Zbl 1099.74009, MR 1994378, 10.1023/A:1026062615145 |
Reference:
|
[12] Rajagopal, K. R.: On implicit constitutive theories for fluids.J. Fluid. Mech. 550 (2006), 243-249. Zbl 1097.76009, MR 2263984, 10.1017/S0022112005008025 |
Reference:
|
[13] Rajagopal, K. R., Srinivasa, A. R.: On the thermodynamics of fluids defined by implicit constitutive relations.Z. Angew. Math. Phys. 59 (2008), 715-729. Zbl 1149.76007, MR 2417387, 10.1007/s00033-007-7039-1 |
Reference:
|
[14] Zarnitsina, V. I., Pokhilko, A. V., Ataullakhanov, F. I.: A mathematical model for spatio-temporal dynamics of intrinsic pathway of blood coagulation. I. The model description.Thromb. Res. 84 (1996), 225-236. 10.1016/S0049-3848(96)00182-X |
Reference:
|
[15] Zarnitsina, V. I., Pokhilko, A. V., Ataullakhanov, F. I.: A mathematical model for spatio-temporal dynamics of intrinsic pathway of blood coagulation. II. Results.Thromb. Res. 84 (1996), 333-344. 10.1016/S0049-3848(96)00197-1 |
. |