Previous |  Up |  Next

Article

Title: Shear flows of a new class of power-law fluids (English)
Author: Le Roux, Christiaan
Author: Rajagopal, Kumbakonam R.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 2
Year: 2013
Pages: 153-177
Summary lang: English
.
Category: math
.
Summary: We consider the flow of a class of incompressible fluids which are constitutively defined by the symmetric part of the velocity gradient being a function, which can be non-monotone, of the deviator of the stress tensor. These models are generalizations of the stress power-law models introduced and studied by J. Málek, V. Průša, K. R. Rajagopal: Generalizations of the Navier-Stokes fluid from a new perspective. Int. J. Eng. Sci. 48 (2010), 1907–1924. We discuss a potential application of the new models and then consider some simple boundary-value problems, namely steady planar Couette and Poiseuille flows with no-slip and slip boundary conditions. We show that these problems can have more than one solution and that the multiplicity of the solutions depends on the values of the model parameters as well as the choice of boundary conditions. (English)
Keyword: non-Newtonian fluid
Keyword: Couette flow
Keyword: Poiseuille flow
Keyword: slip boundary condition
MSC: 35Q35
MSC: 76A05
MSC: 76D03
idZBL: Zbl 1274.76039
idMR: MR3034820
DOI: 10.1007/s10492-013-0008-4
.
Date available: 2013-03-01T15:51:35Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143161
.
Reference: [1] Anand, M., Rajagopal, K., Rajagopal, K. R.: A model incorporating some of the mechanical and biomechanical factors underlying clot formation and dissolution in flowing blood.J. Theor. Med. 5 (2003), 183-218. MR 2158290, 10.1080/10273660412331317415
Reference: [2] Anand, M., Rajagopal, K., Rajagopal, K. R.: A model for the formation and lysis of blood clots.Pathophysiology of Homeostasis and Thrombosis 34 (2005), 109-120. 10.1159/000089931
Reference: [3] Burgers, J. M.: Mechanical considerations---model systems---phenomenological theories of relaxation and viscosity.In: First Report on Viscosity and Plasticity J. M. Burgers Nordemann Publishing Company New York (1935).
Reference: [4] Drazin, P. G., Reid, W. H.: Hydrodynamic Stability (2nd ed.).Cambridge University Press (Cambridge), (2004). MR 2098531
Reference: [5] Lawson, J., Rajagopal, K.: Regulation of hemostatic system function by biochemical and mechanical factors.In: Modeling of Biological Materials F. Mollica, L. Preziosi, K. R. Rajagopal Birkhäuser Boston (2007), 179-210. MR 2341232
Reference: [6] Málek, J., Průša, V., Rajagopal, K. R.: Generalizations of the Navier-Stokes fluid from a new perspective.Int. J. Eng. Sci. 48 (2010), 1907-1924. Zbl 1231.76073, MR 2778752, 10.1016/j.ijengsci.2010.06.013
Reference: [7] Maxwell, J. C.: On the dynamical theory of gases.Philos. Trans. R. Soc. Lond. Ser. A 157 (1866), 26-78.
Reference: [8] Noll, W. A.: A new mathematical theory of simple materials.Arch. Ration. Mech. Anal. 48 (1972), 1-50. Zbl 0271.73006, MR 0445985, 10.1007/BF00253367
Reference: [9] Oldroyd, J. G.: On the formulation of rheological equations of state.Proc. R. Soc. Lond. Ser. A 200 (1950), 523-541. Zbl 1157.76305, MR 0035192, 10.1098/rspa.1950.0035
Reference: [10] Oldroyd, J. G.: Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids.Proc. R. Soc. Lond. Ser. A 245 (1958), 278-297. MR 0094085, 10.1098/rspa.1958.0083
Reference: [11] Rajagopal, K. R.: On implicit constitutive theories.Appl. Math. 48 (2003), 279-319. Zbl 1099.74009, MR 1994378, 10.1023/A:1026062615145
Reference: [12] Rajagopal, K. R.: On implicit constitutive theories for fluids.J. Fluid. Mech. 550 (2006), 243-249. Zbl 1097.76009, MR 2263984, 10.1017/S0022112005008025
Reference: [13] Rajagopal, K. R., Srinivasa, A. R.: On the thermodynamics of fluids defined by implicit constitutive relations.Z. Angew. Math. Phys. 59 (2008), 715-729. Zbl 1149.76007, MR 2417387, 10.1007/s00033-007-7039-1
Reference: [14] Zarnitsina, V. I., Pokhilko, A. V., Ataullakhanov, F. I.: A mathematical model for spatio-temporal dynamics of intrinsic pathway of blood coagulation. I. The model description.Thromb. Res. 84 (1996), 225-236. 10.1016/S0049-3848(96)00182-X
Reference: [15] Zarnitsina, V. I., Pokhilko, A. V., Ataullakhanov, F. I.: A mathematical model for spatio-temporal dynamics of intrinsic pathway of blood coagulation. II. Results.Thromb. Res. 84 (1996), 333-344. 10.1016/S0049-3848(96)00197-1
.

Files

Files Size Format View
AplMat_58-2013-2_3.pdf 519.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo