Previous |  Up |  Next

Article

Title: Remarks on sequence-covering maps (English)
Author: Tuyen, Luong Quoc
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 4
Year: 2012
Pages: 645-650
Summary lang: English
.
Category: math
.
Summary: In this paper, we prove that each sequence-covering and boundary-compact map on $g$-metrizable spaces is 1-sequence-covering. Then, we give some relationships between sequence-covering maps and 1-sequence-covering maps or weak-open maps, and give an affirmative answer to the problem posed by F.C. Lin and S. Lin in \cite{Lin.F.C.and.Lin.S-2011}. (English)
Keyword: $g$-metrizable space
Keyword: weak base
Keyword: $sn$-network
Keyword: compact map
Keyword: boundary-compact map
Keyword: sequence-covering map
Keyword: 1-sequence-covering map
Keyword: weak-open map
Keyword: closed map
MSC: 54C10
MSC: 54D65
MSC: 54E40
MSC: 54E99
idMR: MR3016433
.
Date available: 2013-03-02T13:51:40Z
Last updated: 2015-02-11
Stable URL: http://hdl.handle.net/10338.dmlcz/143197
.
Reference: [1] An T.V., Tuyen L.Q.: Further properties of $1$-sequence-covering maps.Comment. Math. Univ. Carolin. 49 (2008), no. 3, 477–484. Zbl 1212.54092, MR 2490441
Reference: [2] An T.V., Tuyen L.Q.: On $\pi$-images of separable metric spaces and a problem of Shou Lin.Mat. Vesnik, (2011)(to appear). MR 2965962
Reference: [3] Arhangel'skii A.V.: Mappings and spaces.Russian Math. Surveys 21 (1966), no. 4, 115–162. MR 0227950
Reference: [4] Engelking R.: General Topology (revised and completed edition).Heldermann Verlag, Berlin, 1989. MR 1039321
Reference: [5] Franklin S.P.: Spaces in which sequences suffice.Fund. Math. 57 (1965), 107–115. Zbl 0168.43502, MR 0180954
Reference: [6] Ge Y.: Characterizations of $sn$-metrizable spaces.Publ. Inst. Math. (Beograd) (N.S) 74 (88) (2003), 121–128. Zbl 1245.54016, MR 2066998, 10.2298/PIM0374121G
Reference: [7] Lee K.B.: On certain $g$-first countable spaces.Pacific J. Math. 65 (1976), no. 1, 113–118. Zbl 0359.54022, MR 0423307, 10.2140/pjm.1976.65.113
Reference: [8] Lin F.C., Lin S.: On sequence-covering boundary compact maps of metric spaces.Adv. Math. (China) 39 (2010), no. 1, 71–78. MR 2667123
Reference: [9] Lin F.C., Lin S.: Sequence-covering maps on generalized metric spaces.arXiv: 1106.3806.
Reference: [10] Lin S.: On sequence-covering $s$-mappings.Adv. Math. (China) 25 (1996), no. 6, 548–551. Zbl 0864.54026, MR 1453163
Reference: [11] Lin S.: Point-Countable Covers and Sequence-Covering Mappings.Chinese Science Press, Beijing, 2002. Zbl 1004.54001, MR 1939779
Reference: [12] Lin S., Liu C.: On spaces with point-countable $cs$-networks.Topology Appl. 74 (1996), 51–60. Zbl 0869.54036, MR 1425925, 10.1016/S0166-8641(96)00043-0
Reference: [13] Lin S., Yan P.: Sequence-covering maps of metric spaces.Topology Appl. 109 (2001), 301–314. Zbl 0966.54012, MR 1807392, 10.1016/S0166-8641(99)00163-7
Reference: [14] Lin S., Tanaka Y.: Point-countable $k$-networks, closed maps, and related results.Topology Appl. 59 (1994), 79–86. Zbl 0817.54025, MR 1293119, 10.1016/0166-8641(94)90101-5
Reference: [15] Liu C.: On weak bases.Topology Appl. 150 (2005), 91–99. Zbl 1081.54026, MR 2133670, 10.1016/j.topol.2004.11.008
Reference: [16] Siwiec F.: Sequence-covering and countably bi-quotient maps.General Topology Appl. 1 (1971), 143–154. MR 0288737, 10.1016/0016-660X(71)90120-6
Reference: [17] Siwiec F.: On defining a space by a weak base.Pacific J. Math. 52 (1974), 233–245. Zbl 0285.54022, MR 0350706, 10.2140/pjm.1974.52.233
Reference: [18] Xia S.: Characterizations of certain $g$-first countable spaces.Adv. Math. 29 (2000), 61–64. Zbl 0999.54010, MR 1769127
Reference: [19] Yan P., Lin S.: Point-countable $k$-networks, $cs^*$-network and $\alpha_4$-spaces.Topology Proc. 24 (1999), 345–354. Zbl 0966.54014, MR 1802697
Reference: [20] Yan P., Lin S.: CWC.-mappings and metrization theorems, Adv. Math. (China) 36 (2007), no. 2, 153–158. MR 2362727
Reference: [21] Yan P.F., Lin S., Jiang S.L.: Metrizability is preserved by closed sequence-covering maps.Acta Math. Sinica 47 (2004), no. 1, 87–90. MR 2050500
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-4_12.pdf 203.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo