Title:
|
Remarks on sequence-covering maps (English) |
Author:
|
Tuyen, Luong Quoc |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
53 |
Issue:
|
4 |
Year:
|
2012 |
Pages:
|
645-650 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we prove that each sequence-covering and boundary-compact map on $g$-metrizable spaces is 1-sequence-covering. Then, we give some relationships between sequence-covering maps and 1-sequence-covering maps or weak-open maps, and give an affirmative answer to the problem posed by F.C. Lin and S. Lin in \cite{Lin.F.C.and.Lin.S-2011}. (English) |
Keyword:
|
$g$-metrizable space |
Keyword:
|
weak base |
Keyword:
|
$sn$-network |
Keyword:
|
compact map |
Keyword:
|
boundary-compact map |
Keyword:
|
sequence-covering map |
Keyword:
|
1-sequence-covering map |
Keyword:
|
weak-open map |
Keyword:
|
closed map |
MSC:
|
54C10 |
MSC:
|
54D65 |
MSC:
|
54E40 |
MSC:
|
54E99 |
idMR:
|
MR3016433 |
. |
Date available:
|
2013-03-02T13:51:40Z |
Last updated:
|
2015-02-11 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143197 |
. |
Reference:
|
[1] An T.V., Tuyen L.Q.: Further properties of $1$-sequence-covering maps.Comment. Math. Univ. Carolin. 49 (2008), no. 3, 477–484. Zbl 1212.54092, MR 2490441 |
Reference:
|
[2] An T.V., Tuyen L.Q.: On $\pi$-images of separable metric spaces and a problem of Shou Lin.Mat. Vesnik, (2011)(to appear). MR 2965962 |
Reference:
|
[3] Arhangel'skii A.V.: Mappings and spaces.Russian Math. Surveys 21 (1966), no. 4, 115–162. MR 0227950 |
Reference:
|
[4] Engelking R.: General Topology (revised and completed edition).Heldermann Verlag, Berlin, 1989. MR 1039321 |
Reference:
|
[5] Franklin S.P.: Spaces in which sequences suffice.Fund. Math. 57 (1965), 107–115. Zbl 0168.43502, MR 0180954 |
Reference:
|
[6] Ge Y.: Characterizations of $sn$-metrizable spaces.Publ. Inst. Math. (Beograd) (N.S) 74 (88) (2003), 121–128. Zbl 1245.54016, MR 2066998, 10.2298/PIM0374121G |
Reference:
|
[7] Lee K.B.: On certain $g$-first countable spaces.Pacific J. Math. 65 (1976), no. 1, 113–118. Zbl 0359.54022, MR 0423307, 10.2140/pjm.1976.65.113 |
Reference:
|
[8] Lin F.C., Lin S.: On sequence-covering boundary compact maps of metric spaces.Adv. Math. (China) 39 (2010), no. 1, 71–78. MR 2667123 |
Reference:
|
[9] Lin F.C., Lin S.: Sequence-covering maps on generalized metric spaces.arXiv: 1106.3806. |
Reference:
|
[10] Lin S.: On sequence-covering $s$-mappings.Adv. Math. (China) 25 (1996), no. 6, 548–551. Zbl 0864.54026, MR 1453163 |
Reference:
|
[11] Lin S.: Point-Countable Covers and Sequence-Covering Mappings.Chinese Science Press, Beijing, 2002. Zbl 1004.54001, MR 1939779 |
Reference:
|
[12] Lin S., Liu C.: On spaces with point-countable $cs$-networks.Topology Appl. 74 (1996), 51–60. Zbl 0869.54036, MR 1425925, 10.1016/S0166-8641(96)00043-0 |
Reference:
|
[13] Lin S., Yan P.: Sequence-covering maps of metric spaces.Topology Appl. 109 (2001), 301–314. Zbl 0966.54012, MR 1807392, 10.1016/S0166-8641(99)00163-7 |
Reference:
|
[14] Lin S., Tanaka Y.: Point-countable $k$-networks, closed maps, and related results.Topology Appl. 59 (1994), 79–86. Zbl 0817.54025, MR 1293119, 10.1016/0166-8641(94)90101-5 |
Reference:
|
[15] Liu C.: On weak bases.Topology Appl. 150 (2005), 91–99. Zbl 1081.54026, MR 2133670, 10.1016/j.topol.2004.11.008 |
Reference:
|
[16] Siwiec F.: Sequence-covering and countably bi-quotient maps.General Topology Appl. 1 (1971), 143–154. MR 0288737, 10.1016/0016-660X(71)90120-6 |
Reference:
|
[17] Siwiec F.: On defining a space by a weak base.Pacific J. Math. 52 (1974), 233–245. Zbl 0285.54022, MR 0350706, 10.2140/pjm.1974.52.233 |
Reference:
|
[18] Xia S.: Characterizations of certain $g$-first countable spaces.Adv. Math. 29 (2000), 61–64. Zbl 0999.54010, MR 1769127 |
Reference:
|
[19] Yan P., Lin S.: Point-countable $k$-networks, $cs^*$-network and $\alpha_4$-spaces.Topology Proc. 24 (1999), 345–354. Zbl 0966.54014, MR 1802697 |
Reference:
|
[20] Yan P., Lin S.: CWC.-mappings and metrization theorems, Adv. Math. (China) 36 (2007), no. 2, 153–158. MR 2362727 |
Reference:
|
[21] Yan P.F., Lin S., Jiang S.L.: Metrizability is preserved by closed sequence-covering maps.Acta Math. Sinica 47 (2004), no. 1, 87–90. MR 2050500 |
. |