[2] Chow, B., Knopf, D.: 
The Ricci Flow: an Introduction. Mathematical Surveys and Monographs 110, American Mathematical Society, Providence, RI (2004), 325. 
MR 2061425 | 
Zbl 1086.53085 
[8] Hamilton, R. S.: 
The Ricci flow on surface. Mathematics and general relativity (Proc. Conf. Santa Cruz/Calif., 1986), Contemp. Math. 71 (1988), 237-262. 
DOI 10.1090/conm/071/954419 | 
MR 0954419 
[9] Hamilton, R. S.: 
The formation of singularities in the Ricci flow. (Cambridge, MA, USA, 1993). Suppl. J. Differ. Geom. 2 (1995), 7-136. 
MR 1375255 | 
Zbl 0867.53030 
[12] Ishihara, S., Tashiro, Y.: 
On Riemannian manifolds admitting a concircular transformation. Math. J. Okayama Univ. 9 (1959), 19-47. 
MR 0120588 | 
Zbl 0093.35701 
[13] Kobayashi, K.: 
Transformation Group in Differential Geometry. Springer, Berlin (1972), 182. 
MR 0355886 
[14] Lichnerowicz, A.: 
Sur les tranformations conformes d'une variété riemannianne compacte. French C.R. Acad. Sci. Paris 259 (1964), 697-700. 
MR 0166734 
[15] Nouhaud, O.: 
Transformations infinitesimales harmoniques. C. R. Acad., Paris, Ser. A 274 (1972), 573-576. 
MR 0290289 | 
Zbl 0242.53013 
[16] Perelman, G.: 
The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159v1 [math.DG] 11 Nov 2002 39. 
Zbl 1130.53001 
[18] Smol'nikova, M. V.: 
On global geometry of harmonic symmetric bilinear forms. Proc. Steklov Inst. Math. 236 (2002), 315-318. 
MR 1931032 
[19] Stepanov, S. E., Smol'nikova, M. V., Shandra, I. G.: 
Infinitesimal harmonic maps. Russ. Math. 48 (2004), 65-70. 
MR 2101680 | 
Zbl 1092.53027 
[22] Yano, K.: 
The Theory of Lie Derivatives and Its Applications. Nord-Holland, Amsterdam (1957), 299. 
MR 0088769 | 
Zbl 0077.15802 
[23] Yano, K.: 
Integral Formulas in Riemannian Geometry. Marcel Dekker, New York (1970), 156. 
MR 0284950 | 
Zbl 0213.23801 
[24] Yano, K., Nagano, T.: 
On geodesic vector fields in a compact orientable Riemannian space. Comment. Math. Helv. 35 (1961), 55-64. 
DOI 10.1007/BF02567005 | 
MR 0124854 
[25] Yano, K.: 
Differential Geometry on Complex and Almost Complex Spaces. Pergamon Press, Oxford (1965), 323. 
MR 0187181 | 
Zbl 0127.12405