Previous |  Up |  Next

Article

Title: The sum-product algorithm: algebraic independence and computational aspects (English)
Author: Malvestuto, Francesco M.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 1
Year: 2013
Pages: 4-22
Summary lang: English
.
Category: math
.
Summary: The sum-product algorithm is a well-known procedure for marginalizing an “acyclic” product function whose range is the ground set of a commutative semiring. The algorithm is general enough to include as special cases several classical algorithms developed in information theory and probability theory. We present four results. First, using the sum-product algorithm we show that the variable sets involved in an acyclic factorization satisfy a relation that is a natural generalization of probability-theoretic independence. Second, we show that for the Boolean semiring the sum-product algorithm reduces to a classical algorithm of database theory. Third, we present some methods to reduce the amount of computation required by the sum-product algorithm. Fourth, we show that with a slight modification the sum-product algorithm can be used to evaluate a general sum-product expression. (English)
Keyword: sum-product algorithm
Keyword: distributive law
Keyword: acyclic set system
Keyword: junction tree
MSC: 47A67
MSC: 62-09
MSC: 62C10
MSC: 68P15
MSC: 68W30
.
Date available: 2013-03-05T15:02:23Z
Last updated: 2013-07-31
Stable URL: http://hdl.handle.net/10338.dmlcz/143237
.
Reference: [1] Aji, S. M., McEliece, R. J.: The generalized distributive law..IEEE Trans. Inform. Theory 46 (2000), 325-343. Zbl 0998.65146, MR 1748973, 10.1109/18.825794
Reference: [2] Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes..J. Assoc. Comput. Mach. 30 (1983), 479-513. Zbl 0624.68087, MR 0709830, 10.1145/2402.322389
Reference: [3] Bernstein, P. A., Goodman, N.: The power of natural semijoins..SIAM J. Comput. 10 (1981), 751-771. MR 0635434, 10.1137/0210059
Reference: [4] Goldman, S. A., Rivest, R. L.: Making maximum-entropy computations easier by adding extra constraints..In: Maximum-Entropy and Bayesian Methods in Science and Engineering 2 (G. J. Erikson and C. R. Smith, eds.), Kluwer Academic Pub. 1988, pp. 323-340. MR 0970828
Reference: [5] Goodman, N., Shmueli, O., Tay, T.: GYO reductions, canonical connections, tree and cyclic schema, and tree projections..J. Comput. and System Sci. 29 (1984), 338-358. MR 0769592, 10.1016/0022-0000(84)90004-7
Reference: [6] Kschinschang, F. R., Frey, B. J., Loeliger, H.-A.: Factor graphs and the sum-product algorithm..IEEE Trans. Inform. Theory 47 (2001), 498-519. MR 1820474, 10.1109/18.910572
Reference: [7] Maier, D., Ullman, J. D.: Connections in acyclic hypergraphs..Theoret. Comput. Sci. 32 (1984), 185-199. Zbl 0557.05054, MR 0761167, 10.1016/0304-3975(84)90030-6
Reference: [8] Malvestuto, F. M.: Existence of extensions and product extensions for discrete probability distributions..Discrete Math. 69 (1988), 61-77. Zbl 0637.60021, MR 0935028, 10.1016/0012-365X(88)90178-1
Reference: [9] Malvestuto, F. M.: From conditional independences to factorization constraints with discrete random variables..Ann. Math. Artif. Intel. 35 (2002), 253-285. Zbl 1001.68033, MR 1899954, 10.1023/A:1014551721406
Reference: [10] Mezzini, M.: Fast minimal triangulation algorithm using minimum degree criterion..Theoret. Comput. Sci. 412 (2011), 3775-3787. Zbl 1220.05121, MR 2839718, 10.1016/j.tcs.2011.04.022
Reference: [11] Tarjan, R. E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs..SIAM J. Comput. 13 (1984), 566-579. Zbl 0562.68055, MR 0749707, 10.1137/0213035
.

Files

Files Size Format View
Kybernetika_49-2013-1_2.pdf 318.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo