Previous |  Up |  Next

Article

Title: On the weak robustness of fuzzy matrices (English)
Author: Plavka, Ján
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 1
Year: 2013
Pages: 128-140
Summary lang: English
.
Category: math
.
Summary: A matrix $A$ in $(\max,\min)$-algebra (fuzzy matrix) is called weakly robust if $A^k\otimes x $ is an eigenvector of $A$ only if $x$ is an eigenvector of $A$. The weak robustness of fuzzy matrices are studied and its properties are proved. A characterization of the weak robustness of fuzzy matrices is presented and an $O(n^2)$ algorithm for checking the weak robustness is described. (English)
Keyword: weak robustness
Keyword: fuzzy matrices
MSC: 08A72
MSC: 90B35
MSC: 90C47
.
Date available: 2013-03-05T15:12:24Z
Last updated: 2013-07-31
Stable URL: http://hdl.handle.net/10338.dmlcz/143244
.
Reference: [1] Cechlárová, K.: Eigenvectors in bottleneck algebra..Linear Algebra Appl. 174 (1992), 63-73. Zbl 0756.15014, MR 1179341
Reference: [2] Cechlárová, K.: Unique solvability of $\max-\min$ fuzzy equations and strong regularity of matrices over fuzzy algebra..Fuzzy Sets and Systems 75 (1995), 165-177. Zbl 0852.15011, MR 1358219
Reference: [3] Nola, A. Di, Sessa, S., Pedrycz, W., Sanchez, E.: Fuzzy Relation Equations and Their Application to Knowledge Engineering..Kluwer, Dordrecht 1989. MR 1120025
Reference: [4] Gavalec, M.: Computing matrix period in max-min algebra..Discrete Appl. Math. 75 (1997), 63-70. Zbl 0876.05070, MR 1451951, 10.1016/S0166-218X(96)00079-0
Reference: [5] Gavalec, M.: Solvability and unique solvability of $\max$-$\min$ fuzzy equations..Fuzzy Sets and Systems 124 (2001), 385-393. Zbl 0994.03047, MR 1860858, 10.1016/S0165-0114(01)00108-7
Reference: [6] Gondran, M., Minoux, M.: Valeurs propres et vecteurs propres en théorie des graphes..Colloques Internationaux, C.N.R.S., Paris 1978, pp. 181-183.
Reference: [7] Gondran, M., Minoux, M.: Graphs, Dioids and Semirings: New Models and Algorithms..Springer 2008. Zbl 1201.16038, MR 2389137
Reference: [8] Horvath, T., Vojtáš, P.: Induction of fuzzy and annotated logic programs..Inductive Logic Programming 4455 (2007), 260-274. Zbl 1201.68089
Reference: [9] Molnárová, M., Myšková, H., Plavka, J.: The robustness of interval fuzzy matrices..Linear Algebra and Its Applications
Reference: [10] Myšková, H.: Interval systems of max-separable linear equations..Linear Algebra Appl. 403 (2005), 263-272. Zbl 1129.15003, MR 2140286
Reference: [11] Myšková, H.: Control solvability of interval systems of max-separable linear equations..Linear Algebra Appl. 416 (2006), 215-223. Zbl 1129.15003, MR 2242726
Reference: [12] Myšková, M.: Max-min interval systems of linear equations with bounded solution..Kybernetika 48 (2012), 2, 299-308. MR 2954328
Reference: [13] Plavka, J., Szabó, P.: On the $\lambda$-robustness of matrices over fuzzy algebra..Discrete Appl. Math. 159(2011), 5, 381-388. Zbl 1225.15027, MR 2755915, 10.1016/j.dam.2010.11.020
Reference: [14] Plavka, J.: On the $O(n^3)$ algorithm for checking the strong robustness of interval fuzzy matrices..Discrete Appl. Math. 160 (2012), 640-647. MR 2876347, 10.1016/j.dam.2011.11.010
Reference: [15] Plavka, J., Vojtáš, P.: On the computing the maximal multiple users preferences using strong robustness of interval fuzzy matrices..Submitted.
Reference: [16] Sanchez, E.: Resolution of eigen fuzzy sets equations..Fuzzy Sets and Systems 1 (1978), 69-74. Zbl 0366.04001, MR 0494745, 10.1016/0165-0114(78)90033-7
Reference: [17] Sanchez, E.: Medical diagnosis and composite relations..In: Advances in Fuzzy Set Theory and Applications (M. M. Gupta, R. K. Ragade, R. R. Yager, eds.), North-Holland, Amsterdam - New York 1979, pp. 437-444. MR 0558737
Reference: [18] Tan, Yi-Jia: Eigenvalues and eigenvectors for matrices over distributive lattices..Lin. Algebra Appl. 283 (1998), 257-272. Zbl 0932.15005, MR 1657171, 10.1016/S0024-3795(98)10105-2
Reference: [19] Tan, Yi-Jia: On the eigenproblem of matrices over distributive lattices..Lin. Algebra Appl. 374 (2003), 96-106. MR 2008782
Reference: [20] Terano, T., Tsukamoto, Y.: Failure diagnosis by using fuzzy logic..In: Proc. IEEE Conference on Decision Control, New Orleans 1977, pp. 1390-1395.
Reference: [21] Zimmernann, K.: Extremální algebra (in Czech)..Ekonom. ústav ČSAV, Praha 1976.
Reference: [22] Zimmermann, U.: Linear and Combinatorial Optimization in Ordered Algebraic Structure..North Holland, Amsterdam 1981. MR 0609751
.

Files

Files Size Format View
Kybernetika_49-2013-1_9.pdf 318.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo