| Title: | On character of points in the Higson corona of a metric space (English) | 
| Author: | Banakh, Taras | 
| Author: | Chervak, Ostap | 
| Author: | Zdomskyy, Lubomyr | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 54 | 
| Issue: | 2 | 
| Year: | 2013 | 
| Pages: | 159-178 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | We prove that for an unbounded metric space $X$, the minimal character $\mathsf m\chi(\check X)$ of a point of the Higson corona $\check X$ of $X$ is equal to $\mathfrak u$ if $X$ has asymptotically isolated balls and to $\max\{\mathfrak u,\mathfrak d\}$ otherwise. This implies that under $\mathfrak u < \mathfrak d$ a metric space $X$ of bounded geometry is coarsely equivalent to the Cantor macro-cube $2^{<\mathbb N}$ if and only if $\dim (\check X)=0$ and $\mathsf m\chi (\check X)= \mathfrak d$. This contrasts with a result of Protasov saying that under CH the coronas of any two asymptotically zero-dimensional unbounded metric separable spaces are homeomorphic. (English) | 
| Keyword: | Higson corona | 
| Keyword: | character of a point | 
| Keyword: | ultrafilter number | 
| Keyword: | dominating number | 
| MSC: | 03E17 | 
| MSC: | 03E35 | 
| MSC: | 03E50 | 
| MSC: | 54D35 | 
| MSC: | 54E35 | 
| MSC: | 54F45 | 
| idZBL: | Zbl 06221260 | 
| idMR: | MR3067701 | 
| . | 
| Date available: | 2013-06-25T12:47:56Z | 
| Last updated: | 2015-07-06 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/143267 | 
| . | 
| Reference: | [1] Banakh T., Zarichnyi I.: Characterizing the Cantor bi-cube in asymptotic categories.Groups Geom. Dyn. 5 (2011), no. 4, 691–728. Zbl 1246.54023, MR 2836457, 10.4171/GGD/145 | 
| Reference: | [2] Banakh T., Zarichnyi I.: A coarse characterization of the Baire macro-space.Proc. of Intern. Geometry Center 3 (2010), no. 4, 6–14 (available at http://arxiv.org/abs/1103.5118). | 
| Reference: | [3] Banakh T., Zdomskyy L.: The coherence of semifilters: a survey. Selection principles and covering properties in topology.53–105, Quad. Mat., 18, Dept. Math., Seconda Univ. Napoli, Caserta, 2006. MR 2395751 | 
| Reference: | [4] Banakh T., Zdomskyy L.: Coherence of Semifilters.book in progress, http://www.franko.lviv.ua/faculty/mechmat/Departments/Topology/booksite.html. Zbl 1162.03026 | 
| Reference: | [5] Bell G., Dranishnikov A.: Asymptotic dimension.Topology Appl. 155 (2008), no. 12, 1265–1296. MR 2423966 | 
| Reference: | [6] Blass A.: Near coherence of filters, I. Cofinal equivalence of models of arithmetic.Notre Dame J. Formal Logic 27 (1986), 579–591. Zbl 0622.03040, MR 0867002, 10.1305/ndjfl/1093636772 | 
| Reference: | [7] Blass A.: Combinatorial cardinal characteristics of the continuum.in: Handbook of Set Theory, Chapter 6, pp. 395–489, Springer, Dordrecht, 2010. MR 2768685, 10.1007/978-1-4020-5764-9_7 | 
| Reference: | [8] Canjar M.: Cofinalities of countable ultraproducts: the existence theorem.Notre Dame J. Formal Logic 30 (1989), no. 4, 539–542. Zbl 0694.03029, MR 1036675, 10.1305/ndjfl/1093635237 | 
| Reference: | [9] van Douwen E.: The integers and topology.in: Handbook of Set-theoretic Topology, 111–167, North-Holland, Amsterdam, 1984. Zbl 0561.54004, MR 0776622 | 
| Reference: | [10] Dranishnikov A.: Asymptotic topology.Uspekhi Mat. Nauk 55 (2000), no. 6, 71–116. Zbl 1028.54032, MR 1840358 | 
| Reference: | [11] Dranishnikov A.N., Keesling J., Uspenskij V.V.: On the Higson corona of uniformly contractible spaces.Topology 37 (1998), no. 4, 791–803. Zbl 0910.54026, MR 1607744, 10.1016/S0040-9383(97)00048-7 | 
| Reference: | [12] Dranishnikov A., Zarichnyi M.: Universal spaces for asymptotic dimension.Topology Appl. 140 (2004), no. 2–3, 203–225. Zbl 1063.54027, MR 2074917 | 
| Reference: | [13] Fremlin D.: Consequences of Martin's Axiom.Cambridge Tracts in Mathematics, 84, Cambridge University Press, London, 1984. Zbl 1156.03050 | 
| Reference: | [14] Kechris A.: Classical Descriptive Set Theory.Springer, New York, 1995. Zbl 0819.04002, MR 1321597 | 
| Reference: | [15] Laflamme C., Zhu J.-P.: The Rudin-Blass ordering of ultrafilters.J. Symbolic Logic 63 (1998), 584–592. Zbl 0911.04001, MR 1627310, 10.2307/2586852 | 
| Reference: | [16] Protasov I.V.: Normal ball structures.Mat. Stud. 20 (2003), 3–16. Zbl 1053.54503, MR 2019592 | 
| Reference: | [17] Protasov I.V.: Coronas of balleans.Topology Appl. 149 (2005), no. 1–3, 149–160. Zbl 1068.54036, MR 2130861, 10.1016/j.topol.2004.09.005 | 
| Reference: | [18] Protasov I.V.: Coronas of ultrametric spaces.Comment. Math. Univ. Carolin. 52 (2011), 303–307. Zbl 1240.54087, MR 2849052 | 
| Reference: | [19] Roe J.: Lectures on Coarse Geometry.American Mathematical Society, Providence, RI, 2003. Zbl 1042.53027, MR 2007488 | 
| Reference: | [20] Vaughan J.: Small uncountable cardinals and topology.in: Open Problems in Topology, 195–218, North-Holland, Amsterdam, 1990. MR 1078647 | 
| . |