Previous |  Up |  Next

Article

Title: The dual space of precompact groups (English)
Author: Ferrer, M.
Author: Hernández, S.
Author: Uspenskij, V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 2
Year: 2013
Pages: 239-244
Summary lang: English
.
Category: math
.
Summary: For any topological group $G$ the dual object $\widehat G$ is defined as the set of equivalence classes of irreducible unitary representations of $G$ equipped with the Fell topology. If $G$ is compact, $\widehat G$ is discrete. In an earlier paper we proved that $\widehat G$ is discrete for every metrizable precompact group, i.e. a dense subgroup of a compact metrizable group. We generalize this result to the case when $G$ is an almost metrizable precompact group. (English)
Keyword: compact group
Keyword: precompact group
Keyword: representation
Keyword: Pontryagin--van Kampen duality
Keyword: compact-open topology
Keyword: Fell dual space
Keyword: Fell topology
Keyword: Kazhdan property (T)
MSC: 22A25
MSC: 22C05
MSC: 22D35
MSC: 43A35
MSC: 43A40
MSC: 43A65
MSC: 54H11
idZBL: Zbl 06221265
idMR: MR3067706
.
Date available: 2013-06-25T12:52:46Z
Last updated: 2015-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/143272
.
Reference: [1] Arhangel'skii A., Tkachenko M.: Topological Groups and Related Structures.Atlantis Press, Amsterdam-Paris, 2008. MR 2433295
Reference: [2] Aussenhofer L.: Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups.Dissertation, Tübingen 1998; Dissertationes Math. (Rozprawy Mat.) 384 (1999). Zbl 0953.22001, MR 1736984
Reference: [3] Bekka B., de la Harpe P., Valette A.: Kazhdan's Property $(T)$.Cambridge University Press, Cambridge, 2008.
Reference: [4] Chasco M.J.: Pontryagin duality for metrizable groups.Arch. Math. 70 (1998), 22–28. Zbl 0899.22001, MR 1487450, 10.1007/s000130050160
Reference: [5] Comfort W.W., Raczkowski S.U., Trigos-Arrieta F.J.: The dual group of a dense subgroup.Czechoslovak Math. J. 54 (129) (2004), 509–533. Zbl 1080.22500, MR 2059270, 10.1023/B:CMAJ.0000042588.07352.99
Reference: [6] Dikranjan D., Shakhmatov D.: Quasi-convex density and determining subgroups of compact Abelian groups.J. Math. Anal. Appl. 363 (2010), no. 1, 42–48. Zbl 1178.22005, MR 2559039, 10.1016/j.jmaa.2009.07.038
Reference: [7] Dixmier J.: Les C$^\ast$-algèbres et leurs représentations.Gauthier-Villars, Paris, 1969. Zbl 0288.46055, MR 0246136
Reference: [8] Engelking R.: General Topology.revised and completed edition, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [9] Fell J.M.G.: The dual spaces of $C^\ast$-algebras.Trans. Amer. Math. Soc. 94 (1960), 365–403. Zbl 0090.32803, MR 0146681
Reference: [10] Fell J.M.G.: Weak containment and induced representations of groups.Canad. J. Math. 14 (1962), 237–268. Zbl 0195.42201, MR 0150241, 10.4153/CJM-1962-016-6
Reference: [11] Ferrer M.V., Hernández S.: Dual topologies on groups.Topology Appl.(to appear). MR 2921826
Reference: [12] Ferrer M.V., Hernández S., Uspenskij V.: Precompact groups and property $(T)$.arXiv:1112.1350. MR 3045168
Reference: [13] de la Harpe P., Valette A.: La propriété $(T)$ de Kazhdan pour les groupes localement compacts.Astérisque 175, Soc. Math. France, 1989. Zbl 0759.22001
Reference: [14] Hernández S., Macario S., Trigos-Arrieta F.J.: Uncountable products of determined groups need not be determined.J. Math. Anal. Appl. 348 (2008), no. 2, 834–842. Zbl 1156.22002, MR 2446038, 10.1016/j.jmaa.2008.07.065
Reference: [15] Hofmann K.H., Morris S.A.: The Structure of Compact Groups: A Primer for Students - a Handbook for the Expert.De Gruyter Studies in Mathematics, 25, Walter de Gruyter, Berlin-New York, 2006. MR 2261490
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-2_9.pdf 208.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo