Title:
|
The dual space of precompact groups (English) |
Author:
|
Ferrer, M. |
Author:
|
Hernández, S. |
Author:
|
Uspenskij, V. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
54 |
Issue:
|
2 |
Year:
|
2013 |
Pages:
|
239-244 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For any topological group $G$ the dual object $\widehat G$ is defined as the set of equivalence classes of irreducible unitary representations of $G$ equipped with the Fell topology. If $G$ is compact, $\widehat G$ is discrete. In an earlier paper we proved that $\widehat G$ is discrete for every metrizable precompact group, i.e. a dense subgroup of a compact metrizable group. We generalize this result to the case when $G$ is an almost metrizable precompact group. (English) |
Keyword:
|
compact group |
Keyword:
|
precompact group |
Keyword:
|
representation |
Keyword:
|
Pontryagin--van Kampen duality |
Keyword:
|
compact-open topology |
Keyword:
|
Fell dual space |
Keyword:
|
Fell topology |
Keyword:
|
Kazhdan property (T) |
MSC:
|
22A25 |
MSC:
|
22C05 |
MSC:
|
22D35 |
MSC:
|
43A35 |
MSC:
|
43A40 |
MSC:
|
43A65 |
MSC:
|
54H11 |
idZBL:
|
Zbl 06221265 |
idMR:
|
MR3067706 |
. |
Date available:
|
2013-06-25T12:52:46Z |
Last updated:
|
2015-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143272 |
. |
Reference:
|
[1] Arhangel'skii A., Tkachenko M.: Topological Groups and Related Structures.Atlantis Press, Amsterdam-Paris, 2008. MR 2433295 |
Reference:
|
[2] Aussenhofer L.: Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups.Dissertation, Tübingen 1998; Dissertationes Math. (Rozprawy Mat.) 384 (1999). Zbl 0953.22001, MR 1736984 |
Reference:
|
[3] Bekka B., de la Harpe P., Valette A.: Kazhdan's Property $(T)$.Cambridge University Press, Cambridge, 2008. |
Reference:
|
[4] Chasco M.J.: Pontryagin duality for metrizable groups.Arch. Math. 70 (1998), 22–28. Zbl 0899.22001, MR 1487450, 10.1007/s000130050160 |
Reference:
|
[5] Comfort W.W., Raczkowski S.U., Trigos-Arrieta F.J.: The dual group of a dense subgroup.Czechoslovak Math. J. 54 (129) (2004), 509–533. Zbl 1080.22500, MR 2059270, 10.1023/B:CMAJ.0000042588.07352.99 |
Reference:
|
[6] Dikranjan D., Shakhmatov D.: Quasi-convex density and determining subgroups of compact Abelian groups.J. Math. Anal. Appl. 363 (2010), no. 1, 42–48. Zbl 1178.22005, MR 2559039, 10.1016/j.jmaa.2009.07.038 |
Reference:
|
[7] Dixmier J.: Les C$^\ast$-algèbres et leurs représentations.Gauthier-Villars, Paris, 1969. Zbl 0288.46055, MR 0246136 |
Reference:
|
[8] Engelking R.: General Topology.revised and completed edition, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[9] Fell J.M.G.: The dual spaces of $C^\ast$-algebras.Trans. Amer. Math. Soc. 94 (1960), 365–403. Zbl 0090.32803, MR 0146681 |
Reference:
|
[10] Fell J.M.G.: Weak containment and induced representations of groups.Canad. J. Math. 14 (1962), 237–268. Zbl 0195.42201, MR 0150241, 10.4153/CJM-1962-016-6 |
Reference:
|
[11] Ferrer M.V., Hernández S.: Dual topologies on groups.Topology Appl.(to appear). MR 2921826 |
Reference:
|
[12] Ferrer M.V., Hernández S., Uspenskij V.: Precompact groups and property $(T)$.arXiv:1112.1350. MR 3045168 |
Reference:
|
[13] de la Harpe P., Valette A.: La propriété $(T)$ de Kazhdan pour les groupes localement compacts.Astérisque 175, Soc. Math. France, 1989. Zbl 0759.22001 |
Reference:
|
[14] Hernández S., Macario S., Trigos-Arrieta F.J.: Uncountable products of determined groups need not be determined.J. Math. Anal. Appl. 348 (2008), no. 2, 834–842. Zbl 1156.22002, MR 2446038, 10.1016/j.jmaa.2008.07.065 |
Reference:
|
[15] Hofmann K.H., Morris S.A.: The Structure of Compact Groups: A Primer for Students - a Handbook for the Expert.De Gruyter Studies in Mathematics, 25, Walter de Gruyter, Berlin-New York, 2006. MR 2261490 |
. |