Previous |  Up |  Next

Article

Title: Optimal closing of a pair trade with a model containing jumps (English)
Author: Larsson, Stig
Author: Lindberg, Carl
Author: Warfheimer, Marcus
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 3
Year: 2013
Pages: 249-268
Summary lang: English
.
Category: math
.
Summary: A pair trade is a portfolio consisting of a long position in one asset and a short position in another, and it is a widely used investment strategy in the financial industry. Recently, Ekström, Lindberg, and Tysk studied the problem of optimally closing a pair trading strategy when the difference of the two assets is modelled by an Ornstein-Uhlenbeck process. In the present work the model is generalized to also include jumps. More precisely, we assume that the difference between the assets is an Ornstein-Uhlenbeck type process, driven by a Lévy process of finite activity. We prove a necessary condition for optimality (a so-called verification theorem), which takes the form of a free boundary problem for an integro-differential equation. We analyze a finite element method for this problem and prove rigorous error estimates, which are used to draw conclusions from numerical simulations. In particular, we present strong evidence for the existence and uniqueness of an optimal solution. (English)
Keyword: pairs trading
Keyword: optimal stopping
Keyword: Ornstein-Uhlenbeck type process
Keyword: finite element method
Keyword: error estimate
MSC: 45J05
MSC: 65L60
MSC: 65N30
MSC: 91G10
idZBL: Zbl 06221230
idMR: MR3066820
DOI: 10.1007/s10492-013-0012-8
.
Date available: 2013-05-17T10:40:39Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143276
.
Reference: [1] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods. 3rd ed., Texts in Applied Mathematics 15.Springer New York (2008). MR 2373954
Reference: [2] Ekström, E., Lindberg, C., Tysk, J.: Optimal liquidation of a pair trade.(to appear). MR 2792082
Reference: [3] Elliott, R. J., Hoek, J. van der, Malcolm, W. P.: Pairs trading.Quant. Finance 5 (2005), 271-276. MR 2238537, 10.1080/14697680500149370
Reference: [4] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19 American Mathematical Society, Providence, RI (1998). Zbl 0902.35002, MR 1625845
Reference: [5] Garroni, M. G., Menaldi, J. L.: Second Order Elliptic Integro-Differential Problems.Chapman & Hall/CRC (2002). Zbl 1014.45002, MR 1911531
Reference: [6] Gatev, E., Goetzmann, W., Rouwenhorst, G.: Pairs trading: performance of a relative-value arbitrage.Review of Financial Studies 19 (2006), 797-827. 10.1093/rfs/hhj020
Reference: [7] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus.Graduate Texts in Mathematics 113 Springer, New York (1988). Zbl 0638.60065, MR 0917065, 10.1007/978-1-4684-0302-2_2
Reference: [8] Larsson, S., Thomée, V.: Partial Differential Equations with Numerical Methods.Texts in Applied Mathematics 45 Springer, Berlin (2003). Zbl 1025.65002, MR 1995838
Reference: [9] Peskir, G., Shiryaev, A.: Optimal Stopping and Free-Boundary Problems, Lectures in Mathematics, ETH Zürich.Birkhäuser Basel (2006). MR 2256030
Reference: [10] Protter, P. E.: Stochastic Integration and Differential Equations.Stochastic Modelling and Applied Probability 21, Second edition. Version 2.1. Corrected third printing Springer, Berlin (2005). MR 2273672
Reference: [11] Schatz, A. H.: An observation concerning Ritz-Galerkin methods with indefinite bilinear forms.Math. Comput. 28 (1974), 959-962. Zbl 0321.65059, MR 0373326, 10.1090/S0025-5718-1974-0373326-0
.

Files

Files Size Format View
AplMat_58-2013-3_1.pdf 321.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo