Previous |  Up |  Next

Article

Title: Global Lipschitz continuity for elliptic transmission problems with a boundary intersecting interface (English)
Author: Druet, Pierre-Etienne
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 138
Issue: 2
Year: 2013
Pages: 185-224
Summary lang: English
.
Category: math
.
Summary: We investigate the regularity of the weak solution to elliptic transmission problems that involve two layered anisotropic materials separated by a boundary intersecting interface. Under a pair of compatibility conditions for the angle of the two surfaces and the boundary data at the contact line, we prove the existence of up to the boundary square-integrable second derivatives, and the global Lipschitz continuity of the solution. If only the weakest, necessary condition is satisfied, we show that the second weak derivatives remain integrable to a certain power less than two. (English)
Keyword: elliptic transmission problem
Keyword: regularity theory
Keyword: Lipschitz continuity
MSC: 35B65
MSC: 35J25
idZBL: Zbl 06221249
idMR: MR3112365
DOI: 10.21136/MB.2013.143291
.
Date available: 2013-05-27T14:27:52Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143291
.
Reference: [1] Bacuta, C., Mazzucato, A. L., Nistor, V., Zikatanov, L.: Interface and mixed boundary value problems on $n$-dimensional polyhedral domains.Doc. Math., J. DMV 15 687-745 (2010). Zbl 1207.35117, MR 2735986
Reference: [2] Elschner, J., Rehberg, J., Schmidt, G.: Optimal regularity for elliptic transmission problems including $C^1$ interfaces.Interfaces Free Bound. 9 233-252 (2007). MR 2314060
Reference: [3] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 ed.Classics in Mathematics. Springer, Berlin (2001). Zbl 1042.35002, MR 1814364
Reference: [4] Haller-Dintelmann, R., Kaiser, H.-C., Rehberg, J.: Elliptic model problems including mixed boundary conditions and material heterogeneities.J. Math. Pures Appl. (9) 89 25-48 (2008). Zbl 1132.35022, MR 2378088, 10.1016/j.matpur.2007.09.001
Reference: [5] Kufner, A., John, O., Fučík, S.: Function Spaces.Academia, Praha (1977). MR 0482102
Reference: [6] Ladyzhenskaya, O. A., Ural'tseva, N. N.: Linear and Quasilinear Elliptic Equations.Mathematics in Science and Engeneering 46. Academic Press. New York (1968). Zbl 0177.37404, MR 0244627
Reference: [7] Ladyzhenskaya, O. A., Rivkind, V. Ya., Ural'tseva, N. N.: The classical solvability of diffraction problems.Tr. Mat. Inst. Steklova 92 116-146 (1966), Russian. Zbl 0165.11802, MR 0211050
Reference: [8] Ladyzhenskaya, O. A., Solonnikov, V. A.: Solutions of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid.Tr. Mat. Inst. Steklova 59 115-173 (1960), Russian. MR 0170130
Reference: [9] Li, Y. Y., Vogelius, M.: Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients.Arch. Ration. Mech. Anal. 153 91-151 (2000). Zbl 0958.35060, MR 1770682, 10.1007/s002050000082
Reference: [10] Lions, J. L., Magenes, E.: Problèmes aux limites non homogènes. IV.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 15 311-326 (1961), French. Zbl 0115.31302, MR 0140938
Reference: [11] Lions, J. L., Magenes, E.: Inhomogenous Boundary Problems and Applications. Vol. 1, 2.Dunod, Paris (1968), French.
Reference: [12] Mercier, D.: Minimal regularity of the solutions of some transmission problems.Math. Methods Appl. Sci. 26 321-348 (2003). Zbl 1035.35035, MR 1953299, 10.1002/mma.356
Reference: [13] Nicaise, S., Sändig, A.-M.: Transmission problems for the Laplace and elasticity operators: Regularity and boundary integral formulation.Math. Models Methods Appl. Sci. 9 855-898 (1999). Zbl 0958.35023, MR 1702865, 10.1142/S0218202599000403
Reference: [14] Savaré, G.: Regularity results for elliptic equations in Lipschitz domains.J. Funct. Anal. 152 176-201 (1998). MR 1600081, 10.1006/jfan.1997.3158
Reference: [15] Stampacchia, G.: Su un probleme relativo alle equazioni di tipo ellitico del secondo ordine.Ricerche Mat. 5 1-24 (1956), Italian. MR 0082607
Reference: [16] Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus.Ann. Inst. Fourier 15 189-257 (1965), French Colloques Int. Centre Nat. Rech. Sci. 146 189-258 (1965). Zbl 0151.15401, MR 0192177, 10.5802/aif.204
Reference: [17] Troianiello, G. M.: Elliptic Differential Equations and Obstacle Problems.The University Series in Mathematics. Plenum Press, New York (1987). Zbl 0655.35002, MR 1094820
.

Files

Files Size Format View
MathBohem_138-2013-2_8.pdf 449.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo