Previous |  Up |  Next

Article

Title: M-weak and L-weak compactness of b-weakly compact operators (English)
Author: H'Michane, J.
Author: El Kaddouri, A.
Author: Bouras, K.
Author: Moussa, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 3
Year: 2013
Pages: 367-375
Summary lang: English
.
Category: math
.
Summary: We characterize Banach lattices under which each b-weakly compact (resp. b-AM-compact, strong type (B)) operator is L-weakly compact (resp. M-weakly compact). (English)
Keyword: b-weakly compact operator
Keyword: b-AM-compact operator
Keyword: strong type (B) operator
Keyword: order continuous norm
Keyword: positive Schur property
MSC: 46A40
MSC: 46B40
MSC: 46B42
.
Date available: 2013-06-29T06:53:18Z
Last updated: 2015-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/143307
.
Reference: [1] Aliprantis C.D., Burkinshaw O.: Positive Operators.reprint of the 1985 original, Springer, Dordrecht, 2006. Zbl 1098.47001, MR 2262133
Reference: [2] Altin B.: Some properties of b-weakly compact operators.Gazi University Journal of Science 18 (3) (2005), 391–395.
Reference: [3] Altin B.: On b-weakly compact operators on Banach lattices.Taiwanese J. Math. 11 (2007), 143–150. Zbl 1139.47018, MR 2304011
Reference: [4] Alpay S., Altin B., Tonyali C.: On property $(b)$ of vector lattices.Positivity 7 (2003), no. 1–2, 135–139. Zbl 1036.46018, MR 2028377, 10.1023/A:1025840528211
Reference: [5] Alpay S., Altin B., Tonyali C.: A note on Riesz spaces with property-b.Czechoslovak Math. J. 56 (131) (2006), no. 2, 765–772. Zbl 1164.46310, MR 2291773, 10.1007/s10587-006-0054-0
Reference: [6] Alpay S., Altin B.: A note on b-weakly compact operators.Positivity 11 (2007), no. 4, 575–582. Zbl 1137.47028, MR 2346443, 10.1007/s11117-007-2110-x
Reference: [7] Alpay S., Ercan Z.: Characterizations of Riesz spaces with b-property.Positivity 13 (2009), no. 1, 21–30. Zbl 1167.46001, MR 2466226, 10.1007/s11117-008-2227-6
Reference: [8] Alpay S., Altin B.: On operators of strong type B.preprint.
Reference: [9] Aqzzouz B., Elbour A., Hmichane J.: Some properties of the class of positive Dunford-Pettis operators.J. Math. Anal. Appl. 354 (2009), 295–300. Zbl 1167.47033, MR 2510440, 10.1016/j.jmaa.2008.12.063
Reference: [10] Aqzzouz B., Hmichane J.: The class of b-AM-compact operators.Quaestions Mathematicae(to appear).
Reference: [11] Aqzzouz B., Elbour A.: On the weak compactness of b-weakly compact operators.Positivity 14 (2010), no. 1, 75–81. Zbl 1198.47034, MR 2596465, 10.1007/s11117-009-0006-7
Reference: [12] Aqzzouz B., Elbour A., Hmichane J.: On some properties of the class of semi-compact operators.Bull. Belg. Math. Soc. Simon Stevin 18 (2011), no. 4, 761–767. Zbl 1250.47020, MR 2918181
Reference: [13] Aqzzouz B., Hmichane J.: The b-weak compactness of order weakly compact operators.Complex Anal. Oper. Theory 7 (2013), no. 1, 3–8, DOI 10.1007/s 11785-011-0138-1. MR 3010785, 10.1007/s11785-011-0138-1
Reference: [14] Aqzzouz B., Elbour A.: The b-weakly compactness of semi-compact operators.Acta Sci. Math. (Szeged) 76 (2010), 501–510. Zbl 1235.47018, MR 2789684
Reference: [15] Aqzzouz B., Elbour A., Moussa M., Hmichane J.: Some characterizations of b-weakly compact operators.Math. Rep. (Bucur.) 12 (62) (2010), no. 4, 315–324. Zbl 1235.47019, MR 2777361
Reference: [16] Aqzzouz B., Hmichane J., Aboutafail O.: Compactness of b-weakly compact operators.Acta Sci. Math. (Szeged) 78 (2012), 163–171. Zbl 1261.47059
Reference: [17] Chen Z.L., Wickstead A.W.: L-weakly and M-weakly compact operators.Indag. Math. (N.S.) 10 (1999), no. 3, 321–336. Zbl 1028.47028, MR 1819891, 10.1016/S0019-3577(99)80025-1
Reference: [18] Cheng Na, Chen Zi-li: b-AM-compact operators on Banach lattices.Chin. J. Eng. Math. 27 (2010), no. 4, ID: 1005–3085. Zbl 1235.47020, MR 2777452
Reference: [19] Ghoussoub N., Johnson W.B.: Counterexamples to several problems on the factorization of bounded linear operators.Proc. Amer. Math. Soc. 92 (1984), no. 2, 233–238. Zbl 0615.46022, MR 0754710, 10.1090/S0002-9939-1984-0754710-8
Reference: [20] Niculescu C.: Order $\sigma$-continuous Operators on Banach Lattices.Lecture Notes in Mathematics, 991, Springer, Berlin, 1983. Zbl 0515.47016, MR 0714186, 10.1007/BFb0061571
Reference: [21] Zaanen A.C.: Introduction to Operator Theory in Riesz Spaces.Springer, Berlin, 1997. Zbl 0878.47022, MR 1631533
Reference: [22] Meyer-Nieberg P.: Banach Lattices.Universitext, Springer, Berlin, 1991. Zbl 0743.46015, MR 1128093
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-3_5.pdf 211.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo