Previous |  Up |  Next

Article

Title: Continua with unique symmetric product (English)
Author: Anaya, José G.
Author: Castañeda-Alvarado, Enrique
Author: Illanes, Alejandro
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 3
Year: 2013
Pages: 397-406
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a metric continuum. Let $F_{n}(X)$ denote the hyperspace of nonempty subsets of $X$ with at most $n$ elements. We say that the continuum $X$ has unique hyperspace $F_{n}(X)$ provided that the following implication holds: if $Y$ is a continuum and $F_{n}(X)$ is homeomorphic to $F_{n}(Y)$, then $X$ is homeomorphic to $Y$. In this paper we prove the following results: (1) if $X$ is an indecomposable continuum such that each nondegenerate proper subcontinuum of $X$ is an arc, then $X$ has unique hyperspace $F_{2}(X)$, and (2) let $X$ be an arcwise connected continuum for which there exists a unique point $v\in X$ such that $v$ is the vertex of a simple triod. Then $X$ has unique hyperspace $F_{2}(X)$. (English)
Keyword: arc continuum
Keyword: continuum
Keyword: indecomposable
Keyword: symmetric product
Keyword: unique hyperspace
MSC: 54B20
MSC: 54F15
.
Date available: 2013-06-29T06:56:22Z
Last updated: 2015-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/143309
.
Reference: [1] Acosta G., Hernández-Gutiérrez R., Martínez-de-la-Vega V.: Dendrites and symmetric products.Glas. Mat. Ser. III 44 (64) (2009), 195–210. Zbl 1173.54001, MR 2525664, 10.3336/gm.44.1.12
Reference: [2] Castañeda E.: Embedding symmetric products in Euclidean spaces.Continuum Theory, Lectures Notes in Pure and Applied Mathematics, 230, Marcel Dekker, New York, 2002, pp. 67–79. Zbl 1045.54006, MR 2001435
Reference: [3] Castañeda E., Illanes A.: Finite graphs have unique symmetric products.Topology Appl. 153 (2006), 1434–1450. Zbl 1095.54006, MR 2211209, 10.1016/j.topol.2005.04.006
Reference: [4] Curtis D., Nhu N.T.: Hyperspaces of finite subsets which are homeomorphic to $\aleph _{0}$-dimensional linear metric spaces.Topology Appl. 19 (1985), 251–260. MR 0794488, 10.1016/0166-8641(85)90005-7
Reference: [5] Hernández-Gutiérrez R., Martínez-de-la-Vega V.: Rigidity of symmetric products.preprint.
Reference: [6] Herrera-Carrasco D., López M. de J., Macías-Romero F.: Dendrites with unique symmetric products.Topology Proc. 34 (2009), 175–190. Zbl 1232.54015, MR 2511904
Reference: [7] Herrera-Carrasco D., Macías-Romero F., Vázquez-Juárez F.: Peano continua with unique symmetric products.J. Math. Res. 4 (2012), 1–9. MR 2949114
Reference: [8] Hurewicz W., Wallman H.: Dimension Theory.Princeton University Press, Princeton, 1969. Zbl 0036.12501, MR 0006493
Reference: [9] Illanes A.: Dendrites with unique hyperspace $F_{2}(X)$.JP J. Geom. Topol. 2 (2002), 75–96. Zbl 1025.54021, MR 1942627
Reference: [10] Illanes A.: Uniqueness of hyperspaces.Questions Answers Gen. Topology 30 (2012), 21–44. MR 2954279
Reference: [11] Illanes A.: Models of hyperspaces.Topology Proc. 41 (2013), 39–64. MR 2920967
Reference: [12] Illanes A., Martínez-Montejano J.M.: Compactifications of $[0,\infty )$ with unique hyperspace $F_{n}(X)$.Glas. Mat. Ser. III 44 (64) (2009), 457–478. Zbl 1185.54008, MR 2587312
Reference: [13] Illanes A., Nadler S.B., Jr.: Hyperspaces; Fundamentals and Recent Advances.Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, New York, 1999. Zbl 0933.54009, MR 1670250
Reference: [14] Nadler S.B., Jr.: Continuum Theory. An Introduction.Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, New York, 1992. Zbl 0757.54009, MR 1192552
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-3_7.pdf 243.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo