| Title: | Extending the ideal of nowhere dense subsets of rationals to a P-ideal (English) | 
| Author: | Filipów, Rafał | 
| Author: | Mrożek, Nikodem | 
| Author: | Recław, Ireneusz | 
| Author: | Szuca, Piotr | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 54 | 
| Issue: | 3 | 
| Year: | 2013 | 
| Pages: | 429-435 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | We show that the ideal of nowhere dense subsets of rationals cannot be extended to an analytic P-ideal, $F_\sigma$ ideal nor maximal P-ideal. We also consider a problem of extendability to a non-meager P-ideals (in particular, to maximal P-ideals). (English) | 
| Keyword: | P-ideal | 
| Keyword: | nowhere dense set | 
| Keyword: | extension | 
| Keyword: | analytic ideal | 
| Keyword: | maximal ideal | 
| Keyword: | meager ideal | 
| Keyword: | ideal convergence | 
| MSC: | 40A05 | 
| MSC: | 40A35 | 
| MSC: | 54D35 | 
| MSC: | 54D80 | 
| MSC: | 54G10 | 
| . | 
| Date available: | 2013-06-29T06:59:35Z | 
| Last updated: | 2015-10-05 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/143311 | 
| . | 
| Reference: | [1] Debs G., Saint Raymond J.: Filter descriptive classes of Borel functions.Fund. Math. 204 (2009), no. 3, 189–213. Zbl 1179.03046, MR 2520152, 10.4064/fm204-3-1 | 
| Reference: | [2] Dow A.: The space of minimal prime ideals of $C(\beta N-{\bf N})$ is probably not basically disconnected.General Topology and Applications (Middletown, CT, 1988), Lecture Notes in Pure and Appl. Math., 123, Dekker, New York, 1990, pp. 81–86. MR 1057626 | 
| Reference: | [3] Filipów R., Mrożek N., Recław I., Szuca P.: Ideal convergence of bounded sequences.J. Symbolic Logic 72 (2007), no. 2, 501–512. Zbl 1123.40002, MR 2320288, 10.2178/jsl/1185803621 | 
| Reference: | [4] Jalali-Naini S.M.: The monotone subsets of Cantor space, filters and descriptive set theory.PhD Thesis, Oxford, 1976. | 
| Reference: | [5] Laczkovich M., Recław I.: Ideal limits of sequences of continuous functions.Fund. Math. 203 (2009), no. 1, 39–46. Zbl 1172.03025, MR 2491780, 10.4064/fm203-1-3 | 
| Reference: | [6] Laflamme C.: Filter games and combinatorial properties of strategies.Set theory (Boise, ID, 1992–1994), Contemp. Math., 192, Amer. Math. Soc., Providence, RI, 1996, pp. 51–67. Zbl 0854.04004, MR 1367134 | 
| Reference: | [7] Solecki S.: Analytic ideals and their applications.Ann. Pure Appl. Logic 99 (1999), no. 1-3, 51–72. Zbl 0932.03060, MR 1708146, 10.1016/S0168-0072(98)00051-7 | 
| Reference: | [8] Talagrand M.: Compacts de fonctions mesurables et filtres non mesurables.Studia Math. 67 (1980), no. 1, 13–43. Zbl 0435.46023, MR 0579439 | 
| Reference: | [9] van Mill J., Reed G.M. (eds.): Open Problems in Topology.North-Holland Publishing Co., Amsterdam, 1990. Zbl 0877.54001, MR 1078636 | 
| Reference: | [10] Zapletal J.: Preserving $P$-points in definable forcing.Fund. Math. 204 (2009), no. 2, 145–154. Zbl 1174.03022, MR 2520149, 10.4064/fm204-2-4 | 
| . |