Previous |  Up |  Next

Article

Title: Diophantine approximation and special Liouville numbers (English)
Author: Schleischitz, Johannes
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 21
Issue: 1
Year: 2013
Pages: 39-76
Summary lang: English
.
Category: math
.
Summary: This paper introduces some methods to determine the simultaneous approximation constants of a class of well approximable numbers $\zeta_{1},\zeta_{2},\ldots ,\zeta_{k}$. The approach relies on results on the connection between the set of all $s$-adic expansions ($s\geq 2$) of $\zeta_{1},\zeta_{2},\ldots ,\zeta_{k}$ and their associated approximation constants. As an application, explicit construction of real numbers $\zeta_{1},\zeta_{2},\ldots ,\zeta_{k}$ with prescribed approximation properties are deduced and illustrated by Matlab plots. (English)
Keyword: convex geometry
Keyword: lattices
Keyword: Liouville numbers
Keyword: successive minima
MSC: 11H06
MSC: 11J13
MSC: 11J81
idZBL: Zbl 06202724
idMR: MR3067121
.
Date available: 2013-07-18T15:26:29Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143348
.
Reference: [1] Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers.1987, North-Holland Verlag, Zbl 0611.10017, MR 0893813
Reference: [2] Jarník, V.: Contribution to the theory of linear homogeneous diophantine approximation.Czechoslovak Math. J., 4, 79, 1954, 330-353, MR 0072183
Reference: [3] Moshchevitin, N.G.: Proof of W.M. Schmidt's conjecture concerning successive minima of a lattice.J. London Math. Soc., 2012, doi: 10.1112/jlms/jdr076, 12 Mar 2012. MR 2959298
Reference: [4] Roy, D.: Diophantine approximation in small degree.2004, Number theory 269--285, CRM Proc. Lecture Notes, 36, Amer. Math. Soc., Providence, RI. Zbl 1077.11051, MR 2076601
Reference: [5] Schmidt, W.M., Summerer, L.: Parametric geometry of numbers and applications.Acta Arithm., 140, 1, 2009, Zbl 1236.11060, MR 2557854, 10.4064/aa140-1-5
Reference: [6] Schmidt, W.M., Summerer, L.: Diophantine approximation and parametric geometry of numbers.to appear in Monatshefte für Mathematik. Zbl 1264.11056, MR 3016519
Reference: [7] Waldschmidt, M.: Report on some recent advances in Diophantine approximation.2009,
.

Files

Files Size Format View
ActaOstrav_21-2013-1_4.pdf 718.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo