Previous |  Up |  Next

Article

Title: Information in vague data sources (English)
Author: Mareš, Milan
Author: Mesiar, Radko
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 3
Year: 2013
Pages: 433-445
Summary lang: English
.
Category: math
.
Summary: This paper deals with the concept of the “size“ or “extent“ of the information in the sense of measuring the improvement of our knowledge after obtaining a message. Standard approaches are based on the probabilistic parameters of the considered information source. Here we deal with situations when the unknown probabilities are subjectively or vaguely estimated. For the considered fuzzy quantities valued probabilities we introduce and discuss information theoretical concepts. (English)
Keyword: alphabet
Keyword: data source
Keyword: entropy
Keyword: fuzziness
Keyword: information
Keyword: triangular norm
MSC: 03E72
MSC: 94A17
.
Date available: 2013-07-18T15:35:49Z
Last updated: 2013-07-31
Stable URL: http://hdl.handle.net/10338.dmlcz/143357
.
Reference: [1] Bezdek, J. C.: Analysis of Fuzzy Information..CRC-Press, Boca Raton 1988. Zbl 0648.00013
Reference: [2] Calvo, T., Mayor, G., Mesiar, R.: Aggregation Operators..New Trends and Applications, Physica-Verlag, Heidelberg 2002. Zbl 0983.00020, MR 1936383
Reference: [3] Luca, A. De, Termini, S.: A definition of a non probabilistic entropy in the setting of fuzzy set theory..Inform. and Control 20 (1972), 301-312. MR 0327383, 10.1016/S0019-9958(72)90199-4
Reference: [4] Dubois, D., Kerre, E., Mesiar, R., Prade, H.: Fuzzy interval analysis..In: Fundamentals of Fuzzy Sets, Kluwer, Dordrecht 2000, pp. 483-581. Zbl 0988.26020, MR 1890240
Reference: [5] Dubois, D., Prade, H.: Possibility Theory. An Approach to Computerized Processing of Uncertainty..Plenum Press, New York 1988. Zbl 0703.68004, MR 1104217
Reference: [6] Feinstein, A.: Foundations of Information Theory..McGraw-Hill, New York 1957. Zbl 0082.34602, MR 0095087
Reference: [7] Giachetti, R. E., Young, R. E.: A parametric representation of fuzzy numbers and their arithmetic operators..Fuzzy Sets and Systems 91 (1997), 185-202. Zbl 0920.04008, MR 1480045
Reference: [8] Hartley, R. V. L.: Transmission of information..Bell System Techn. J. 7 (1928), 3, 535-563.
Reference: [9] Havrda, J., Charvát, F.: Quantification method of classifications processes. Concept of structural a-entropy..Kybernetika 3 (1967), 1, 30-35. MR 0209067
Reference: [10] Fériet, J. Kampé de: Théories de l'information..Springer, Berlin 1974. MR 0371504
Reference: [11] Fériet, J. Kampé de, Forte, B.: Information et probabilité..C. R. Acad. Sci. Paris, Sér. A 265 1967, 110-114; 142-146; 350-353.
Reference: [12] Kerre, E. E., Wang, X.: Reasonable properties for the ordering of fuzzy quantities. Part I., Part II..Fuzzy Sets and Systems 118 (2001), 375-385; 387-405.
Reference: [13] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer, Dordrecht 2000. Zbl 1087.20041, MR 1790096
Reference: [14] Klir, G. J., Folger, T. A.: Fuzzy Sets, Uncertainty and Information..Prentice Hall, Englewood Cliffs 1988. Zbl 0675.94025, MR 0930102
Reference: [15] Klir, G. J.: Fuzzy arithmetic with requisite constraints..Fuzzy Sets and Systems 91 (1997), 2, 165-175. Zbl 0920.04007, MR 1480043, 10.1016/S0165-0114(97)00138-3
Reference: [16] Kolesárová, A., Vivona, D.: Entropy of T-sums and T-products of $L-R$ fuzzy numbers..Kybernetika 37 (2001), 2, 127-145. Zbl 1265.03020, MR 1839223
Reference: [17] Mareš, M.: Computation Over Fuzzy Quantities..CRC-Press, Boca Raton 1994. Zbl 0859.94035, MR 1327525
Reference: [18] Mareš, M.: Weak arithmetics of fuzzy numbers..Fuzzy Sets and Systems 91 (1997), 143-154. MR 1480041, 10.1016/S0165-0114(97)00136-X
Reference: [19] Mareš, M.: Compenzational vagueness..In: Proc. EUSFLAT'2007 (M. Štepnička, V. Novák, and U. Bodenhofer, eds.), Ostrava 2007, pp. 179-184.
Reference: [20] Mareš, M., Mesiar, R.: Verbally generated fuzzy quantities..In: Aggregation Operators. New Trends and Applications(T. Calvo, G. Mayor, and R. Mesiar (eds.), Physica-Verlag, Heidelberg 2002, pp. 291-353. Zbl 1039.68128, MR 1936394
Reference: [21] Mareš, M., Mesiar, R.: Information in granulated data sources..In: Proc. Internat. Conf. on Soft Computing, Computing with Words and Perceptions in Systems (W. Pedrycz, R. Aliev, Mo Jamshidi, and B. Turksen, eds.), Antalya 2007.
Reference: [22] Mesiar, R.: Triangular norms-based addition of fuzzy intervals..Fuzzy Sets and Systems 91 (1997), 73-78. MR 1480048, 10.1016/S0165-0114(97)00143-7
Reference: [23] Mesiar, R., Saminger, S.: Domination of ordered weighted averaging operators over $t$-norms..Soft Computing 8 (2004), 562-570. Zbl 1066.68127, 10.1007/s00500-003-0315-x
Reference: [24] Nguyen, H. T.: A note on the extension principle for fuzzy sets..J. Math. Anal. Appl. 64 (1978), 369-380. Zbl 0377.04004, MR 0480044, 10.1016/0022-247X(78)90045-8
Reference: [25] and, C. Shannon, Weaver, W.: A mathematical theory of communication..Bell System Techn. J. 27 (1948), 379-423; 623-653. MR 0026286
Reference: [26] Sugeno, M.: Theory of Fuzzy Integrals and Its Applications..PhD. Thesis, Tokyo Institute of Technology, 1974.
Reference: [27] Vivona, D., Divari, M.: On a conditional information for fuzzy sets..In: Proc. AGOP'2005, Lugano 2005, pp. 147-149.
Reference: [28] Winkelbauer, K.: Communication channels with finite past history..In: Trans. Second Prague Conference, Statistical Decision Functions and Random Processes, Prague 1959. Publishing House of the Czechoslovak Academy of Sci., Prague 1960, pp. 685-831. Zbl 0161.16904, MR 0129056
Reference: [29] Zadeh, L. A.: Fuzzy sets..Inform. and Control 8 (1965), 338-353. Zbl 0942.00007, MR 0219427, 10.1016/S0019-9958(65)90241-X
Reference: [30] Zadeh, L. A.: The concept of a linguistic variable and its application to approximate reasoning..Inform. Sci. (1975), Part I: 8, 199-249; Part II: 8, 301-357; Part III: 9, 43-80. Zbl 0404.68075, 10.1016/0020-0255(75)90017-1
Reference: [31] Zadeh, L. A.: Fuzzy logic $=$ Computing with words..IEEE Trans. Fuzzy Systems 2 (1977), 103-111. Zbl 0947.03038
Reference: [32] Zadeh, L. A.: Fuzzy sets as a basis for a theory of possibility..Fuzzy Sets and Systems 1 (1978), 3-28. Zbl 0377.04002, MR 0480045, 10.1016/0165-0114(78)90029-5
Reference: [33] Zadeh, L. A.: Yes, no and relatively..Chemtech (1987), June: 340-344; July: 406-410.
Reference: [34] Zadeh, L. A.: From computing with numbers to computing with words - from manipulation of measurements to manipulation of perception..IEEE Trans. Circuits Systems 45 (1999), 105-119. MR 1683230
Reference: [35] Zadeh, L. A.: The concept of cointensive precisation - A key to mechanization of natural language understanding..In: Proc. IPMU, Paris 2006, pp. 13-15.
.

Files

Files Size Format View
Kybernetika_49-2013-3_5.pdf 318.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo