Previous |  Up |  Next

Article

Title: Global finite-time observers for a class of nonlinear systems (English)
Author: Li, Yunyan
Author: Shen, Yanjun
Author: Xia, Xiaohua
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 49
Issue: 2
Year: 2013
Pages: 319-340
Summary lang: English
.
Category: math
.
Summary: Global finite-time observers are designed for a class of nonlinear systems with bounded varying rational powers imposed on the increments of the nonlinearities whose solutions exist and are unique for all positive time. The global finite-time observers designed in this paper are with two homogeneous terms. The global finite-time convergence of the observation error system is achieved by combining global asymptotic stability and local finite-time stability. (English)
Keyword: global finite-time observer
Keyword: nonlinear system
Keyword: homogeneity
MSC: 93B07
MSC: 93C10
MSC: 93D20
idZBL: Zbl 1264.93029
idMR: MR3085399
.
Date available: 2013-07-22T08:53:10Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143370
.
Reference: [1] Bestle, D., Zeitz, M.: Cannonical form observer design for non-linear time-variable systems..Internat. J. Control 38 (1983), 419-431. MR 0708425, 10.1080/00207178308933084
Reference: [2] Bhat, S. P., Bernstein, D. S.: Finite-time stability of continous autonomous systems..SIAM J. Control Optim. 38 (2000), 751-766. MR 1756893, 10.1137/S0363012997321358
Reference: [3] Bhat, S. P., Bernstein, D. S.: Geometric homogeneity with applications to finite-time stability..Math. Control Sign. Systems 17 (2005), 101-127. Zbl 1110.34033, MR 2150956, 10.1007/s00498-005-0151-x
Reference: [4] Chen, M. S., Chen, C. C.: Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances..IEEE Trans. Automat. Control 52 (2007), 2365-2369. MR 2374276, 10.1109/TAC.2007.910724
Reference: [5] Engel, R., Kreisselmeier, G.: A continuous-time observer which converges in finite time..IEEE Trans. Automat. Control 47 (2002), 1202-1204. MR 1911500, 10.1109/TAC.2002.800673
Reference: [6] Gauthier, J. P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems applications to bioreactors..IEEE Trans. Automat. Control 37 (1992), 875-880. Zbl 0775.93020, MR 1164571, 10.1109/9.256352
Reference: [7] Hammouri, H., Targui, B., Armanet, F.: High gain observer based on a triangular structure..Internat. J. Robust Nonlinear Control 12 (2002), 497-518. Zbl 1006.93007, MR 1895967, 10.1002/rnc.638
Reference: [8] Hong, Y., Xu, Y., Huang, J.: Finite-time control for manipulators..Systems Control Lett. 46 (2002), 243-253. MR 2010242, 10.1016/S0167-6911(02)00130-5
Reference: [9] Kotta, Ü.: Application of inverse system for linearization and decoupling..Systems Control Lett. 8 (1987), 453-457. Zbl 0634.93039, 10.1016/0167-6911(87)90086-7
Reference: [10] Krener, A. J., Isidori, A.: Linearization by output injection and nonlinear observers..Syst.ems Control Lett. 3 (1983), 47-52. Zbl 0524.93030, MR 0713426
Reference: [11] Krishnamurthy, P., Khorrami, F., Chandra, R. S.: Global high-gain-based observer and backstepping controller for generalized output-feedback canonical form..IEEE Trans. Automat. Control 48 (2003), 2277-2284. MR 2027259, 10.1109/TAC.2003.820226
Reference: [12] Levine, J., Marino, R.: Nonlinear systems immersion, observers and finite dimensional filters..Systems Control Lett. 7 (1986), 133-142. MR 0836303, 10.1016/0167-6911(86)90019-8
Reference: [13] Li, J., Qian, C., Frye, M. T.: A dual-observer design for global output feedback stabilization of nonlinear systems with low-order and high-order nonlinearities..Internat. J. Robust Nonlinear Control 19 (2009), 1697-1720. MR 2553558, 10.1002/rnc.1401
Reference: [14] Ménard, T., Moulay, E., Perruquetti, W.: A global high-gain finite-time observer..IEEE Trans. Automat. Control 55 (2010), 1500-1506. MR 2668964, 10.1109/TAC.2010.2045698
Reference: [15] Moulay, E., Perruquetti, W.: Finite time stability and stabilization of a class of continuous systems..J. Math. Anal. Appl. 323 (2006), 1430-1443. Zbl 1131.93043, MR 2260193, 10.1016/j.jmaa.2005.11.046
Reference: [16] Moulay, E., Perruquetti, W.: Finite-time stability conditions for non-autonomous continuous systems..Internat. J. Control 81 (2008), 797-803. Zbl 1152.34353, MR 2406886, 10.1080/00207170701650303
Reference: [17] Perruquetti, W., Floquet, T., Moulay, E.: Finite-time observers: application to secure communication..IEEE Trans. Automat. Control 53 (2008), 356-360. MR 2391590, 10.1109/TAC.2007.914264
Reference: [18] Pertew, A. M., Marquez, H. J., Zhao, Q.: $H_\infty$ observer design for Lipschitz nonlinear systems..IEEE Trans. Automat. Control 51 (2006), 1211-1216. MR 2239562, 10.1109/TAC.2006.878784
Reference: [19] Praly, L.: Asymptotic stabilization via output feedback for lower triangular systems with output dependent incremental rate..IEEE Trans. Automat. Control 48 (2003), 1103-1108. MR 1986287, 10.1109/TAC.2003.812819
Reference: [20] Raghavan, S., Hedrick, J. K.: Observer design for a class of nonlinear systems..Internat. J. Control 59 (1994), 515-528. Zbl 0802.93007, MR 1261285, 10.1080/00207179408923090
Reference: [21] Rajamani, R.: Observers for Lipschitz nonlinear systems..IEEE Trans. Automat. Control 43 (1998), 397-401. Zbl 0905.93009, MR 1614812, 10.1109/9.661604
Reference: [22] Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field..Systems Control Lett. 19 (1992), 467-473. Zbl 0762.34032, MR 1195304, 10.1016/0167-6911(92)90078-7
Reference: [23] Shen, Y., Huang, Y.: Uniformly observable and globally Lipschitzian nonlinear systems admit global finite-time observers..IEEE Trans. Automat. Control 54 (2009), 2621-2625. MR 2571925, 10.1109/TAC.2009.2029298
Reference: [24] Shen, Y., Xia, X.: Semi-global finite-time observers for nonlinear systems..Automatica 44 (2008), 3152-3156. Zbl 1153.93332, MR 2531419, 10.1016/j.automatica.2008.05.015
Reference: [25] Shen, Y., Xia, X.: Semi-global finite-time observers for a class of non-Lipschitz systems..In: Nolcos, Bologna 2010, pp. 421-426.
Reference: [26] Shen, Y., Xia, X.: Global asymptotical stability and global finite-time stability for nonlinear homogeneous systems..In: 18th IFAC World Congress, Milan 2011, pp. 4644-4647.
Reference: [27] Thau, F. E.: Observing the state of nonlinear dynamic systems..Internat. J. Control 17 (1973), 471-479. 10.1080/00207177308932395
Reference: [28] Venkataraman, S. T., Gulati, S.: Terminal slider control of nonlinear systems..In: Proc. IEEE International Conference of Advanced Robotics, Pisa 1990, pp. 2513-2514.
Reference: [29] Xia, X., Gao, W.: Nonlinear observer design by observer error linearization..SIAM J. Control Optim. 27 (1989), 199-216. Zbl 0667.93014, MR 0980230, 10.1137/0327011
Reference: [30] Zeitz, M.: The extended Luenberger observer for nonlinear systems..Systems Control Lett. 9 (1987), 149-156. Zbl 0624.93012, MR 0906234, 10.1016/0167-6911(87)90021-1
.

Files

Files Size Format View
Kybernetika_49-2013-2_8.pdf 450.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo