Previous |  Up |  Next

Article

Title: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium (English)
Author: Wei, Zhouchao
Author: Wang, Zhen
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 49
Issue: 2
Year: 2013
Pages: 359-374
Summary lang: English
.
Category: math
.
Summary: By introducing a feedback control to a proposed Sprott E system, an extremely complex chaotic attractor with only one stable equilibrium is derived. The system evolves into periodic and chaotic behaviors by detailed numerical as well as theoretical analysis. Analysis results show that chaos also can be generated via a period-doubling bifurcation when the system has one and only one stable equilibrium. Based on Lyapunov stability theory, the adaptive control law and the parameter update law are derived to achieve modified function projective synchronized between the extended Sprott E system and original Sprott E system. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers. (English)
Keyword: chaotic attractors
Keyword: stable equilibrium
Keyword: Shilnikov theorem
Keyword: Lyapunov exponent
Keyword: synchronization
MSC: 34D06 34H10 34H20 34C28 34D08 34C23 93C40 37D45
MSC: 34H10
MSC: 34H20
MSC: 93C40
idZBL: Zbl 1276.34043
idMR: MR3085401
.
Date available: 2013-07-22T08:56:33Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143372
.
Reference: [1] Chen, G. R., Ueta, T.: Yet another chaotic attractor..Internat. J. Bifur. Chaos 9 (1999), 1465-1466. Zbl 0962.37013, MR 1729683, 10.1142/S0218127499001024
Reference: [2] Lorenz, E. N.: Deterministic non-periodic flow..J. Atmospheric Sci. 20 (1963), 130-141. 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
Reference: [3] Lü, J. H., Chen, G. R.: A new chaotic attractor coined..Internat. J. Bifur. Chaos 12 (2002), 659-661. Zbl 1063.34510, MR 1894886, 10.1142/S0218127402004620
Reference: [4] Lü, J. H., Chen, G. R., Cheng, D. Z.: A new chaotic system and beyond: The generalized Lorenz-like system..Internat. J. Bifur. Chaos 14 (2004), 1507-1537. Zbl 1129.37323, MR 2072347, 10.1142/S021812740401014X
Reference: [5] Lü, J. H., Han, F. L., Yu, X. H., Chen, G. R.: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method..Automatica 40 (2004), 1677-1687. Zbl 1162.93353, MR 2155461, 10.1016/j.automatica.2004.06.001
Reference: [6] Lü, J. H., Yu, S. M., Leung, H., Chen, G. R.: Experimental verification of multidirectional multiscroll chaotic attractors..IEEE Trans. Circuits Systems C I: Regular Papers 53 (2006), 149-165. 10.1109/TCSI.2005.854412
Reference: [7] Liu, Y. J., Pang, G. P.: The basin of attraction of the Liu system..Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 2065-2071. Zbl 1221.34145, MR 2736072, 10.1016/j.cnsns.2010.08.011
Reference: [8] Li, J. M.: Limit cycles bifurcated from a reversible quadratic center..Qualit. Theory Dynam. Systems 6 (2005), 205-215. Zbl 1142.34019, MR 2420857, 10.1007/BF02972673
Reference: [9] Rössler, O. E.: An equation for continuious chaos..Phys. Lett. A 57 (1976), 397-398. 10.1016/0375-9601(76)90101-8
Reference: [10] Silva, C. P.: Shilnikov's theorem - A tutorial..IEEE Trans. Circuits Syst. I 40 (1993), 657-682. MR 1255705, 10.1109/81.246142
Reference: [11] Sprott, J. C.: Some simple chaotic flows..Phys. Rev. E 50 (1994), 647-650. MR 1381868, 10.1103/PhysRevE.50.R647
Reference: [12] Sprott, J. C.: A new class of chaotic circuit..Phys. Lett. A 266 (2000), 19-23. 10.1016/S0375-9601(00)00026-8
Reference: [13] Sprott, J. C.: Simplest dissipative chaotic flow..Phys. Lett. A 228 (1997), 271-274. Zbl 1043.37504, MR 1442639, 10.1016/S0375-9601(97)00088-1
Reference: [14] Shilnikov, L. P.: A case of the existence of a countable number of periodic motions..Soviet Math. Dokl. 6 (1965), 163-166.
Reference: [15] Shilnikov, L. P.: A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type..Math. USSR-Sb. 10 (1970), 91-102. 10.1070/SM1970v010n01ABEH001588
Reference: [16] Shaw, R.: Strange attractor, chaotic behaviour and information flow..Z. Naturforsch. 36A (1981), 80-112. MR 0604920
Reference: [17] Schrier, G. V., Maas, L. R. M.: The difusionless Lorenz equations: Shilnikov bifurcations and reduction to an explicit map..Physica D 141 (2000), 19-36. MR 1764166
Reference: [18] Vaněček, A., Čelikovský, S.: Control Systems: From Linear Analysis to Synthesis of Chaos..Prentice-Hall, London 1996. Zbl 0874.93006
Reference: [19] Wang, X., Chen, G. R.: A chaotic system with only one stable equilibrium..Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1264-1272. MR 2843793, 10.1016/j.cnsns.2011.07.017
Reference: [20] Wang, Z.: Existence of attractor and control of a 3D differential system..Nonlinear Dynamics 60(3) (2010), 369-373. Zbl 1189.70103, MR 2645029, 10.1007/s11071-009-9601-1
Reference: [21] Wei, Z. C.: Dynamical behaviors of a chaotic system with no equilibria..Phys. Lett. A 376 (2011), 248-253. Zbl 1255.37013, MR 2859307
Reference: [22] Yang, Q. G., Chen, G. R., Huang, K. F.: Chaotic attractors of the conjugate Lorenz-type system..Internat. J. Bifur. Chaos 17 (2007), 3929-3949. Zbl 1149.37308, MR 2384392, 10.1142/S0218127407019792
Reference: [23] Yang, Q. G., Chen, G. R.: A chaotic system with one saddle and two stable node-foci..Internat. J. Bifur. Chaos 18 (2008), 1393-1414. Zbl 1147.34306, MR 2427132, 10.1142/S0218127408021063
Reference: [24] Yang, Q. G., Wei, Z. C., Chen, G. R.: A unusual 3D autonomons quadratic chaotic system with two stable node-foci..Internat. J. Bifur. Chaos 20 (2010), 1061-1083. MR 2660159, 10.1142/S0218127410026320
Reference: [25] Yu, S. M., Lü, J. H., Yu, X. H.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops..IEEE Trans. Circuits Systems C I: Regular Papers 59 (2012), 1015-1028. MR 2924533, 10.1109/TCSI.2011.2180429
Reference: [26] Zhao, L. Q., Wang, Q.: Perturbations from a kind of quartic hamiltonians under general cubic polynomials..Sci. China Series A: Mathematics 52 (2009), 427-442. Zbl 1192.34044, MR 2491762, 10.1007/s11425-009-0009-7
.

Files

Files Size Format View
Kybernetika_49-2013-2_10.pdf 3.223Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo