Title:
|
Varieties of Distributive Rotational Lattices (English) |
Author:
|
Czédli, Gábor |
Author:
|
Nagy, Ildikó V. |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
52 |
Issue:
|
1 |
Year:
|
2013 |
Pages:
|
71-78 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A rotational lattice is a structure $\langle L;\vee ,\wedge , g\rangle $ where $L=\langle L;\vee ,\wedge \rangle $ is a lattice and $g$ is a lattice automorphism of finite order. We describe the subdirectly irreducible distributive rotational lattices. Using Jónsson’s lemma, this leads to a description of all varieties of distributive rotational lattices. (English) |
Keyword:
|
rotational lattice |
Keyword:
|
lattice with automorphism |
Keyword:
|
lattice with involution |
Keyword:
|
distributivity |
Keyword:
|
lattice variety |
MSC:
|
06B20 |
MSC:
|
06B75 |
MSC:
|
06D99 |
idZBL:
|
Zbl 06285755 |
idMR:
|
MR3202750 |
. |
Date available:
|
2013-08-02T07:58:39Z |
Last updated:
|
2014-07-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143392 |
. |
Reference:
|
[1] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra. Graduate Texts in Mathematics 78, Springer-Verlag, New York–Berlin, 1981. The Millennium Edition: http://www.math.uwaterloo.ca/s̃nburris/htdocs/ualg.html. Zbl 0478.08001, MR 0648287 |
Reference:
|
[2] Chajda, I., Czédli, G: How to generate the involution lattice of quasiorders?. Studia Sci. Math. Hungar. 32 (1996), 415–427. Zbl 0864.06003, MR 1432183 |
Reference:
|
[3] Chajda, I., Czédli, G., Halaš, R.: Independent joins of tolerance factorable varieties. Algebra Universalis 69 (2013), 83–92. MR 3029971, 10.1007/s00012-012-0213-0 |
Reference:
|
[4] Czédli, G., Szabó, L.: Quasiorders of lattices versus pairs of congruences. Acta Sci. Math. (Szeged) 60 (1995), 207–211. Zbl 0829.06008, MR 1348689 |
Reference:
|
[5] Dziobiak, W., Ježek, J., Maróti, M.: Minimal varieties and quasivarieties of semilattices with one automorphism. Semigroup Forum 78 (2009), 253–261. Zbl 1171.08002, MR 2486638, 10.1007/s00233-008-9087-z |
Reference:
|
[6] Grätzer, G.:: Lattice Theory: Foundation. Birkhäuser Verlag, Basel, 2011. Zbl 1233.06001, MR 2768581 |
Reference:
|
[7] Ježek, J.: Subdirectly irreducible semilattices with an automorphism. Semigroup Forum 43 (1991), 178–186. Zbl 0770.08004, MR 1114689, 10.1007/BF02574263 |
Reference:
|
[8] Jónsson, B.: Algebras whose congruence lattices are distributive. Math. Scand. 21 (1967), 110–121. MR 0237402 |
Reference:
|
[9] Maróti, M.: Semilattices with a group of automorphisms. Algebra Universalis 38 (1997), 238–265. MR 1619766, 10.1007/s000120050054 |
Reference:
|
[10] Nagy, I. V.: Minimal quasivarieties of semilattices over commutative groups. Algebra Universalis (to appear). |
Reference:
|
[11] Vetterlein, T.: Boolean algebras with an automorphism group: a framework for Łukasiewicz logic. J. Mult.-Val. Log. Soft Comput. 14 (2008), 51–67. Zbl 1236.03018, MR 2456707 |
. |