Previous |  Up |  Next

Article

Title: Interior and Closure Operators on Commutative Bounded Residuated Lattices (English)
Author: Rachůnek, Jiří
Author: Svoboda, Zdeněk
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 52
Issue: 1
Year: 2013
Pages: 121-134
Summary lang: English
.
Category: math
.
Summary: Commutative bounded integral residuated lattices form a large class of algebras containing some classes of algebras behind many valued and fuzzy logics. In the paper we introduce and investigate additive closure and multiplicative interior operators on this class of algebras. (English)
Keyword: residuated lattice
Keyword: bounded integral residuated lattice
Keyword: interior operator
Keyword: closure operator
MSC: 03G10
MSC: 06A15
MSC: 06D35
MSC: 06F05
idZBL: Zbl 06285759
idMR: MR3202754
.
Date available: 2013-08-02T08:03:17Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143396
.
Reference: [1] Balbes, R., Dwinger, P.: Distributive Lattices. University Missouri Press, Columbia, 1974. Zbl 0321.06012, MR 0373985
Reference: [2] Cignoli, R. L. O., D’Ottaviano, M. L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer Academic Publishers, Dordrecht, 2000. MR 1786097
Reference: [3] Cignoli, R., Torrens, A.: Glivenko like theorems in natural expansions of BCK-logic. Math. Log. Quart. 50 (2004), 111–125. Zbl 1045.03026, MR 2037731, 10.1002/malq.200310082
Reference: [4] Ciungu, L. C.: Classes of residuated lattices. Annals of University of Craiova. Math. Comp. Sci. Ser. 33 (2006), 180–207. Zbl 1119.03343, MR 2359903
Reference: [5] Dvurečenskij, A., Rachůnek, J.: On Riečan and Bosbach states for bounded R$\ell $-monoids. Math. Slovaca 56 (2006), 487–500. MR 2293582
Reference: [6] Dvurečenskij, A., Rachůnek, J.: Probabilistic averaging in bounded commutative residuated $\ell $-monoids. Discrete Math. 306 (2006), 1317–1326. Zbl 1105.06011, MR 2237716, 10.1016/j.disc.2005.12.024
Reference: [7] Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst. 124 (2001), 271–288. Zbl 0994.03017, MR 1860848
Reference: [8] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, Amsterdam, 2007. Zbl 1171.03001, MR 2531579
Reference: [9] Hájek, P.: Metamathematics of Fuzzy Logic. Springer, Dordrecht, 1998. MR 1900263
Reference: [10] Jipsen, P., Montagna, A.: The Blok-Ferreirim theorem for normal GBL-algebras and its application. Algebra Universalis 60 (2009), 381–404. Zbl 1192.06011, MR 2504748, 10.1007/s00012-009-2106-4
Reference: [11] Jipsen, P., Tsinakis, C.: A Survey of Residuated Lattices. In: Ordered Algebraic Structures, Kluwer, Dordrecht, (2006), 19–56. MR 2083033
Reference: [12] Rachůnek, J., Slezák, V.: Negation in bounded commutative DR$\ell $-monoids. Czechoslovak Math. J. 56 (2007), 755–763. 10.1007/s10587-006-0053-1
Reference: [13] Rachůnek, J., Švrček, F.: MV-algebras with additive closure operators. Acta Univ. Palacki. Olomouc., Fac. Rer. Nat., Math. 39 (2000), 183–189. Zbl 1039.06005, MR 1826361
Reference: [14] Rachůnek, J., Švrček, F.: Interior and closure operators on bounded commutative residuated $\ell $-monoids. Discuss. Math., Gen. Alg. Appl. 28 (2008), 11–27. Zbl 1227.06014, MR 2437765, 10.7151/dmgaa.1132
Reference: [15] Sikorski, R.: Boolean Algebras. 2nd edition, Springer-Verlag, Berlin–Göttingen–Heidelbeg–New York, 1963. Zbl 0122.26101
.

Files

Files Size Format View
ActaOlom_52-2013-1_10.pdf 234.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo