Previous |  Up |  Next

Article

Title: Commutativity theorems for rings with differential identities on Jordan ideals (English)
Author: Oukhtite, L.
Author: Mamouni, A.
Author: Ashraf, Mohammad
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 4
Year: 2013
Pages: 447-457
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate commutativity of ring $R$ with involution $'\ast'$ which admits a derivation satisfying certain algebraic identities on Jordan ideals of $R$. Some related results for prime rings are also discussed. Finally, we provide examples to show that various restrictions imposed in the hypotheses of our theorems are not superfluous. (English)
Keyword: derivation
Keyword: generalized derivation
Keyword: $*$-Jordan ideal
Keyword: commutativity theorems
MSC: 16N60
MSC: 16R50
MSC: 16U70
MSC: 16U80
MSC: 16W10
MSC: 16W25
idZBL: Zbl 1299.16018
idMR: MR3125069
.
Date available: 2013-10-01T21:09:12Z
Last updated: 2016-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/143468
.
Reference: [1] Awtar R.: Lie and Jordan structure in prime rings with derivations.Proc. Amer. Math. Soc. 41 (1973), 67–74. Zbl 0271.16016, MR 0318233, 10.1090/S0002-9939-1973-0318233-5
Reference: [2] Bell H.E., Daif M.N.: On derivations and commutativity in prime rings.Acta Math. Hungar. 66 (1995), 337–343. Zbl 0822.16033, MR 1314011, 10.1007/BF01876049
Reference: [3] Daif M.N., Bell H.E.: Remarks on derivations on semiprime rings.Internat. J. Math. Math. Sci. 15 (1992), 205–206. Zbl 0746.16029, MR 1143947, 10.1155/S0161171292000255
Reference: [4] Herstein I.N.: Rings with Involution.Univ. Chicago Press, Chicago, 1976. Zbl 0495.16007, MR 0442017
Reference: [5] Herstein I.N.: A note on derivations.Canad. Math. Bull. 21 (1978), 369–370. Zbl 0434.16027, MR 0506447, 10.4153/CMB-1978-065-x
Reference: [6] Hongan M.: A note on semiprime rings with derivation.Internat. J. Math. Math. Sci. 20 (1997), no. 2, 413–415. Zbl 0879.16025, MR 1444747, 10.1155/S0161171297000562
Reference: [7] Mamouni A., Oukhtite L.: Derivations satisfying certain algebraic identities on Jordan ideals.Arab. J. Math. 1 (2012), no. 3, 341–346. MR 3041071, 10.1007/s40065-012-0039-9
Reference: [8] Mamouni A., Oukhtite L.: Generalized derivations centralizing on Jordan ideals of rings with involution.submitted.
Reference: [9] Oukhtite L.: On Jordan ideals and derivations in rings with involution.Comment. Math. Univ. Carolin. 51 (2010), no. 3, 389–395. Zbl 1211.16037, MR 2741872
Reference: [10] Oukhtite L.: Posner's second theorem for Jordan ideals in rings with involution.Expo. Math. 29 (2011), 415–419. Zbl 1232.16027, MR 2861767, 10.1016/j.exmath.2011.07.002
Reference: [11] Oukhtite L., Salhi S.: On derivations in $\sigma$-prime rings.Int. J. Algebra 1 (2007), no. 5, 241–246. Zbl 1124.16025, MR 2342997
Reference: [12] Zaidi S.M.A., Ashraf A., Ali S.: On Jordan ideals and left $(\theta ,\theta)$-derivations in prime rings.Int. J. Math. Math. Sci. 2004, no. 37–40, 1957–1964. Zbl 1069.16041, MR 2100888, 10.1155/S0161171204309075
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-4_1.pdf 226.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo