Previous |  Up |  Next

Article

Title: Asymptotic behavior of positive solutions of a Dirichlet problem involving supercritical nonlinearities (English)
Author: Anello, Giovanni
Author: Rao, Giuseppe
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 4
Year: 2013
Pages: 485-491
Summary lang: English
.
Category: math
.
Summary: Let $p>1$, $q>p$, $\lambda >0$ and $s\in ]1,p[$. We study, for $s\rightarrow p^-$, the behavior of positive solutions of the problem $-\Delta_p u = \lambda u^{s-1}+u^{q-1}$ in $\Omega$, $u_{\mid\partial \Omega}=0$. In particular, we give a positive answer to an open question formulated in a recent paper of the first author. (English)
Keyword: elliptic boundary value problems
Keyword: positive solutions
Keyword: variational methods
Keyword: asymptotic behavior
Keyword: combined nonlinearities
MSC: 35J20
MSC: 35J25
MSC: 35J92
idZBL: Zbl 06373979
idMR: MR3125071
.
Date available: 2013-10-01T21:11:30Z
Last updated: 2016-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/143471
.
Reference: [1] Anello G.: On the Dirichlet problem involving the equation $-\Delta_p u=\lambda u^{s-1}$.Nonlinear Anal. 70 (2009), 2060–2066. MR 2492142
Reference: [2] Anello G.: Asymptotic behavior of positive solutions of a Dirichlet problem involving combined nonlinearities.Monatsh. Math. 162 (2011), 1–18. Zbl 1206.35135, MR 2747340, 10.1007/s00605-010-0189-9
Reference: [3] Boccardo L., Escobedo M., Peral I.: A Dirichlet problem involving critical exponent.Nonlinear Anal. 24 (1995), no. 11, 1639–1648. MR 1328589, 10.1016/0362-546X(94)E0054-K
Reference: [4] Gedda M., Veron L.: Quasilinear elliptic equations involving critical Sobolev exponent.Nonlinear Anal. 13 (1989), no. 8, 879–902. MR 1009077, 10.1016/0362-546X(89)90020-5
Reference: [5] Il'yasov Y.: On nonlocal existence results for elliptic equations with convex concave nonlinearities.Nonlinear Anal. 61 (2005), 211–236. Zbl 1190.35112, MR 2122250, 10.1016/j.na.2004.10.022
Reference: [6] Liebermann G.M.: Boundary regularity for solutions of degenerate elliptic equations.Nonlinear Anal. 12 (1988), no. 11, 1203–1219. MR 0969499, 10.1016/0362-546X(88)90053-3
Reference: [7] Moser J.: A new proof of De Giorgi's Theorem concerning the regularity problem for elliptic differential equations.Comm. Pure Appl. Math. 13 (1960), 457–478. Zbl 0111.09301, MR 0170091, 10.1002/cpa.3160130308
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-4_3.pdf 212.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo