Previous |  Up |  Next

Article

Title: On the adaptive wavelet estimation of a multidimensional regression function under $\alpha$-mixing dependence: Beyond the standard assumptions on the noise (English)
Author: Chesneau, Christophe
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 4
Year: 2013
Pages: 527-556
Summary lang: English
.
Category: math
.
Summary: We investigate the estimation of a multidimensional regression function $f$ from $n$ observations of an $\alpha$-mixing process $(Y,X)$, where $Y=f(X)+\xi$, $X$ represents the design and $\xi$ the noise. We concentrate on wavelet methods. In most papers considering this problem, either the proposed wavelet estimator is not adaptive (i.e., it depends on the knowledge of the smoothness of $f$ in its construction) or it is supposed that $\xi$ is bounded or/and has a known distribution. In this paper, we go far beyond this classical framework. Under no boundedness assumption on $\xi$ and no a priori knowledge on its distribution, we construct adaptive term-by-term thresholding wavelet estimators attaining ``sharp'' rates of convergence under the mean integrated squared error over a wide class of functions $f$. (English)
Keyword: nonparametric regression
Keyword: $\alpha$-mixing dependence
Keyword: adaptive estimation
Keyword: wavelet methods
Keyword: rates of convergence
MSC: 62G05
MSC: 62G08
MSC: 62G20
idZBL: Zbl 06373982
idMR: MR3125074
.
Date available: 2013-10-01T21:18:21Z
Last updated: 2016-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/143474
.
Reference: [1] Antoniadis A.: Wavelets in statistics: a review (with discussion).J. Italian Statistical Society Series B 6 (1997), 97–144. 10.1007/BF03178905
Reference: [2] Antoniadis A., Grégoire G., Vial P.: Random design wavelet curve smoothing.Statist. Probab. Lett. 35 (1997), 225–232. Zbl 0889.62029, MR 1484959, 10.1016/S0167-7152(97)00017-5
Reference: [3] Antoniadis A., Bigot J., Sapatinas T.: Wavelet estimators in nonparametric regression: a comparative simulation study.J. Statist. Software 6 (2001), no. 6.
Reference: [4] Antoniadis A., Leporini D.. Pesquet J.-C.: Wavelet thresholding for some classes of non-Gaussian noise.Statist. Neerlandica 56 (2002), no. 4, 434–453. MR 2027535, 10.1111/1467-9574.00211
Reference: [5] Baraud Y., Comte F., Viennet G.: Adaptive estimation in autoregression or $\beta $-mixing regression via model selection.Ann. Statist. 29 (2001), no. 3, 839–875. Zbl 1012.62034, MR 1865343
Reference: [6] Benatia F., Yahia D.: Nonlinear wavelet regression function estimator for censored dependent data.J. Afr. Stat. 7 (2012), 391–411. Zbl 1258.62046, MR 3034386
Reference: [7] Beran J., Shumeyko Y.: On asymptotically optimal wavelet estimation of trend functions under long-range dependence.Bernoulli 18 (2012), no. 1, 137–176. Zbl 1235.62124, MR 2888702, 10.3150/10-BEJ332
Reference: [8] Bochkina N., Sapatinas T.: Minimax rates of convergence and optimality of Bayes factor wavelet regression estimators under pointwise risks.Statist. Sinica 19 (2009), 1389–1406. Zbl 1191.62069, MR 2589188
Reference: [9] Bradley R.C.: Introduction to Strong Mixing Conditions.Vol. 1, 2, 3, Kendrick Press, Heber City, UT, 2007. Zbl 1134.60004, MR 2325294
Reference: [10] Cai T.: Adaptive wavelet estimation: a block thresholding and oracle inequality approach.Ann. Statist. 27 (1999), 898–924. Zbl 0954.62047, MR 1724035
Reference: [11] Cai, T.: On block thresholding in wavelet regression: adaptivity, block size and threshold level.Statist. Sinica 12 (2002), 1241–1273. Zbl 1004.62036, MR 1947074
Reference: [12] Cai T., Brown L.D.: Wavelet shrinkage for nonequispaced samples.Ann. Statist. 26 (1998), 1783–1799. Zbl 0929.62047, MR 1673278, 10.1214/aos/1024691357
Reference: [13] Cai T., Brown L.D.: Wavelet estimation for samples with random uniform design.Statist. Probab. Lett. 42 (1999), 313–321. Zbl 0940.62037, MR 1688134, 10.1016/S0167-7152(98)00223-5
Reference: [14] Carrasco M., Chen X.: Mixing and moment properties of various GARCH and stochastic volatility models.Econometric Theory 18 (2002), 17–39. Zbl 1181.62125, MR 1885348, 10.1017/S0266466602181023
Reference: [15] Chaubey Y.P., Shirazi E.: On MISE of a nonlinear wavelet estimator of the regression function based on biased data under strong mixing.Comm. Statist. Theory Methods(to appear).
Reference: [16] Chaubey Y.P., Chesneau C., Shirazi E.: Wavelet-based estimation of regression function for dependent biased data under a given random design.J. Nonparametr. Stat. 25 (2013), no. 1, 53–71. MR 3039970, 10.1080/10485252.2012.734619
Reference: [17] Chesneau C.: Regression with random design: a minimax study.Statist. Probab. Lett. 77 (2007), no. 1, 40–53. Zbl 1109.62028, MR 2339017, 10.1016/j.spl.2006.05.010
Reference: [18] Chesneau C.: Adaptive wavelet regression in random design and general errors with weakly dependent data.Acta Univ. Apulensis Math. Inform 29 (2012), 65–84. MR 3015056
Reference: [19] Chesneau C., Fadili J.: Adaptive wavelet estimation of a function in an indirect regression model.AStA Adv. Stat. Anal. 96 (2012), no. 1, 25–46. MR 2878037, 10.1007/s10182-011-0157-2
Reference: [20] Chesneau C., Shirazi E.: Nonparametric wavelet regression based on biased data.Comm. Statist. Theory Methods(to appear).
Reference: [21] Chesneau C., Kachour M., Navarro F.: A note on the adaptive estimation of a quadratic functional from dependent observations.IStatistik: Journal of the Turkish Statistical Association 6 (2013), no. 1, 10–26. MR 3086320
Reference: [22] Clyde M.A., George E.I.: Empirical Bayes estimation in wavelet nonparametric regression.in Bayesian Inference in Wavelet-based Models, Lecture Notes in Statistics, 141, Springer, New York, 1999, pp. 309-322. Zbl 0936.62008, MR 1699849, 10.1007/978-1-4612-0567-8_19
Reference: [23] Cohen A., Daubechies I., Jawerth B., Vial P.: Wavelets on the interval and fast wavelet transforms.Appl. Comput. Harmon. Anal. 24 (1993), no. 1, 54–81. MR 1256527, 10.1006/acha.1993.1005
Reference: [24] Daubechies I.: Ten Lectures on Wavelets.SIAM, Philadelphia, PA, 1992. Zbl 1006.42030, MR 1162107
Reference: [25] Davydov Y.: The invariance principle for stationary processes.Theor. Probab. Appl. 15 (1970), no. 3, 498–509. Zbl 0219.60030, MR 0283872, 10.1137/1115050
Reference: [26] Delouille V., Franke J., von Sachs R.: Nonparametric stochastic regression with design-adapted wavelets.Sankhya Ser. A 63 (2001), 328–366. Zbl 1192.62115, MR 1897046
Reference: [27] Delyon B., Juditsky A.: On minimax wavelet estimators.Appl. Comput. Harmon. Anal. 3 (1996), 215–228. Zbl 0865.62023, MR 1400080, 10.1006/acha.1996.0017
Reference: [28] DeVore R., Popov V.: Interpolation of Besov spaces.Trans. Amer. Math. Soc. 305 (1998), 397–414. Zbl 0646.46030, MR 0920166, 10.1090/S0002-9947-1988-0920166-3
Reference: [29] Donoho D.L., Johnstone I.M.: Ideal spatial adaptation by wavelet shrinkage.Biometrika 81 (1994), 425–455. Zbl 0815.62019, MR 1311089, 10.1093/biomet/81.3.425
Reference: [30] Donoho D.L., Johnstone I.M.: Adapting to unknown smoothness via wavelet shrinkage.J. Amer. Statist. Assoc. 90 (1995), no. 432, 1200–1224. Zbl 0869.62024, MR 1379464, 10.1080/01621459.1995.10476626
Reference: [31] Donoho D.L., Johnstone I.M., Kerkyacharian G., Picard D.: Wavelet shrinkage: asymptopia? (with discussion).J. Royal Statist. Soc. Ser. B 57, 301–369. MR 1323344
Reference: [32] Doosti H., Afshari M., Niroumand H.A.: Wavelets for nonparametric stochastic regression with mixing stochastic process.Comm. Statist. Theory Methods 37 (2008), no. 3, 373–385. MR 2432291, 10.1080/03610920701653003
Reference: [33] Doosti H., Islam M.S., Chaubey Y.P., Gora P.: Two dimensional wavelets for nonlinear autoregressive models with an application in dynamical system.Ital. J. Pure Appl. Math. 27 (2010), 39–62. MR 2826252
Reference: [34] Doosti H., Niroumand H.A.: Multivariate stochastic regression estimation by wavelets for stationary time series.Pakistan J. Statist. 25 (2009), no. 1, 37–46. MR 2492520
Reference: [35] Doukhan P.: Mixing. Properties and examples.Lecture Notes in Statistics, 85, Springer, New York, 1994. Zbl 0801.60027, MR 1312160, 10.1007/978-1-4612-2642-0
Reference: [36] Hall P., Turlach B.A.: Interpolation methods for nonlinear wavelet regression with irregularly spaced design.Ann. Statist. 25 (1997), 1912–1925. Zbl 0881.62044, MR 1474074, 10.1214/aos/1069362378
Reference: [37] Härdle W.: Applied Nonparametric Regression.Cambridge University Press, Cambridge, 1990. Zbl 0851.62028, MR 1161622
Reference: [38] Härdle W., Kerkyacharian G., Picard D., Tsybakov A.: Wavelet, approximation and statistical applications.Lectures Notes in Statistics, 129, Springer, New York, 1998. MR 1618204, 10.1007/978-1-4612-2222-4
Reference: [39] Kerkyacharian G., Picard D.: Thresholding algorithms, maxisets and well-concentrated bases.Test 9 (2000), no. 2, 283–344. Zbl 1107.62323, MR 1821645, 10.1007/BF02595738
Reference: [40] Kerkyacharian G., Picard D.: Regression in random design and warped wavelets.Bernoulli 10 (2004), no. 6, 1053–1105. Zbl 1067.62039, MR 2108043, 10.3150/bj/1106314850
Reference: [41] Kulik R., Raimondo M.: Wavelet regression in random design with heteroscedastic dependent errors.Ann. Statist. 37 (2009), 3396–3430. MR 2549564, 10.1214/09-AOS684
Reference: [42] Liang H.: Asymptotic normality of wavelet estimator in heteroscedastic model with $\alpha$-mixing errors.J. Syst. Sci. Complex. 24 (2011), no. 4, 725–737. Zbl 1255.93136, MR 2835351, 10.1007/s11424-010-8354-8
Reference: [43] Li Y.M., Guo J.H.: Asymptotic normality of wavelet estimator for strong mixing errors.J. Korean Statist. Soc. 38 (2009), no. 4, 383–390. MR 2582481, 10.1016/j.jkss.2009.03.002
Reference: [44] Li Y.M., Yin C.D., Wei G.D.: On the asymptotic normality for mixing dependent errors of wavelet regression function estimator.Acta Mathematicae Applicatae Sinica 31 (2008), 1046–1055. MR 2509883
Reference: [45] Li L., Xiao Y.: Mean integrated squared error of nonlinear wavelet-based estimators with long memory data.Ann. Inst. Statist. Math. 59 (2007), 299–324. MR 2394169, 10.1007/s10463-006-0048-6
Reference: [46] Liebscher E.: Estimation of the density and the regression function under mixing conditions.Statist. Decisions 19 (2001), no. 1, 9–26. Zbl 1179.62051, MR 1817218
Reference: [47] Lütkepohl H.: Multiple Time Series Analysis.Springer, Heidelberg, 1992. Zbl 1141.62071
Reference: [48] Mallat S.: A Wavelet Tour of Signal Processing. The Sparse Way.third edition, with contributions from Gabriel Peyré, Elsevier/Academic Press, Amsterdam, 2009. Zbl 1170.94003, MR 2479996
Reference: [49] Masry E.: Wavelet-based estimation of multivariate regression functions in Besov spaces.J. Nonparametr. Statist. 12 (2000), no. 2, 283–308. Zbl 0982.62038, MR 1752317, 10.1080/10485250008832809
Reference: [50] Meyer Y.: Wavelets and Operators.Cambridge University Press, Cambridge, 1992. Zbl 0819.42016, MR 1228209
Reference: [51] Neumann M.H., von Sachs R.: Wavelet thresholding: beyond the Gaussian i.i.d. situation.in: Antoniadis A. and Oppenheim G. (eds.), Wavelets and Statistics (Villard de Lans, 1994), Lecture Notes in Statistics, 103, Springer, New York, 1995, pp. 301–330. Zbl 0831.62071, MR 1364677
Reference: [52] Patil P.N., Truong Y.K.: Asymptotics for wavelet based estimates of piecewise smooth regression for stationary time series.Ann. Inst. Statist. Math. 53 (2001), no. 1, 159–178. Zbl 0995.62092, MR 1820955, 10.1023/A:1017928823619
Reference: [53] Pensky M., Sapatinas T.: Frequentist optimality of Bayes factor estimators in wavelet regression models.Statist. Sinica 17 (2007), 599–633. Zbl 1144.62004, MR 2408682
Reference: [54] Porto R.F., Morettin P.A., Aubin E.C.Q.: Wavelet regression with correlated errors on a piecewise Hölder class.Statist. Probab. Lett. 78 (2008), 2739–2743. Zbl 1256.62019, MR 2465116, 10.1016/j.spl.2008.03.015
Reference: [55] Roussas G.G.: Nonparametric regression estimation under mixing conditions.Stochastic Process. Appl. 36 (1990), no. 1, 107–116. Zbl 0699.62038, MR 1075604
Reference: [56] Tsybakov A.B.: Introduction à l'estimation non-paramétrique.Springer, Berlin, 2004. Zbl 1029.62034, MR 2013911
Reference: [57] Vidakovic B.: Statistical Modeling by Wavelets.John Wiley & Sons, Inc., New York, 1999. Zbl 0924.62032, MR 1681904
Reference: [58] White H., Domowitz, I.: Nonlinear regression with dependent observations.Econometrica 52 (1984), 143–162. MR 0729213, 10.2307/1911465
Reference: [59] Xue L.G.: Uniform convergence rates of the wavelet estimator of regression function under mixing error.Acta Math. Ser. A Chi. Ed. 22 (2002), 528–535. Zbl 1007.62039, MR 1942715
Reference: [60] Yang S.C.: Maximal moment inequality for partial sums of strong mixing sequences and application.Acta. Math. Sin. (Engl. Ser.) 23 (2007), 1013–1024. Zbl 1121.60017, MR 2319611, 10.1007/s10114-005-0841-9
Reference: [61] Zhang S., Zheng Z.: Nonlinear wavelet estimation of regression function with random design.Sci.China Ser. A 42 (1999), no. 8, 825–833. Zbl 0938.62046, MR 1738553, 10.1007/BF02884269
Reference: [62] Zhou X.C., Lin J.G.: A wavelet estimator in a nonparametric regression model with repeated measurements under martingale difference errors structure.Statist. Probab. Lett. 82 (2012), no. 11, 1914–1922. MR 2970292, 10.1016/j.spl.2012.06.028
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-4_6.pdf 371.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo