Previous |  Up |  Next

Article

Title: Pressing Down Lemma for $\lambda $-trees and its applications (English)
Author: Li, Hui
Author: Peng, Liang-Xue
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 3
Year: 2013
Pages: 763-775
Summary lang: English
.
Category: math
.
Summary: For any ordinal $\lambda $ of uncountable cofinality, a $\lambda $-tree is a tree $T$ of height $\lambda $ such that $|T_{\alpha }|<{\rm cf}(\lambda )$ for each $\alpha <\lambda $, where $T_{\alpha }=\{x\in T\colon {\rm ht}(x)=\alpha \}$. In this note we get a Pressing Down Lemma for $\lambda $-trees and discuss some of its applications. We show that if $\eta $ is an uncountable ordinal and $T$ is a Hausdorff tree of height $\eta $ such that $|T_{\alpha }|\leq \omega $ for each $\alpha <\eta $, then the tree $T$ is collectionwise Hausdorff if and only if for each antichain $C\subset T$ and for each limit ordinal $\alpha \leq \eta $ with ${\rm cf}(\alpha )>\omega $, $\{{\rm ht}(c)\colon c\in C\} \cap \alpha $ is not stationary in $\alpha $. In the last part of this note, we investigate some properties of $\kappa $-trees, $\kappa $-Suslin trees and almost $\kappa $-Suslin trees, where $\kappa $ is an uncountable regular cardinal. (English)
Keyword: tree
Keyword: $D$-space
Keyword: $\lambda $-tree
Keyword: property $\gamma $
Keyword: collectionwise Hausdorff
MSC: 54F05
MSC: 54F65
idZBL: Zbl 06282108
idMR: MR3125652
DOI: 10.1007/s10587-013-0050-0
.
Date available: 2013-10-07T12:06:58Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143487
.
Reference: [1] Borges, C. R., Wehrly, A. C.: A study of $D$-spaces.Topology Proc. 16 (1991), 7-15. Zbl 0787.54023, MR 1206448
Reference: [2] Devlin, K. J., Shelah, S.: Suslin properties and tree topologies.Proc. Lond. Math. Soc., III. Ser. 39 (1979), 237-252. MR 0548979, 10.1112/plms/s3-39.2.237
Reference: [3] Engelking, R.: General Topology. Rev. and compl. ed. Sigma Series in Pure Mathematics 6.Heldermann Berlin (1989). MR 1039321
Reference: [4] Fleissner, W. G.: Remarks on Suslin properties and tree topologies.Proc. Am. Math. Soc. 80 (1980), 320-326. MR 0577767, 10.1090/S0002-9939-1980-0577767-2
Reference: [5] Fleissner, W. G., Stanley, A. M.: $D$-spaces.Topology Appl. 114 (2001), 261-271. Zbl 0983.54024, MR 1838325, 10.1016/S0166-8641(00)00042-0
Reference: [6] Fodor, G.: Eine Bemerkung zur Theorie der regressiven Funktionen.Acta Sci. Math. 17 (1956), 139-142. Zbl 0072.04302, MR 0082450
Reference: [7] Guo, H. F., Junnila, H.: On $D$-spaces and thick covers.Topology Appl. 158 (2011), 2111-2121. MR 2831896, 10.1016/j.topol.2011.06.053
Reference: [8] Hart, K. P.: More remarks on Suslin properties and tree topologies.Topology Appl. 15 (1983), 151-158. MR 0686092, 10.1016/0166-8641(83)90033-0
Reference: [9] Kunen, K.: Set Theory.An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics vol. 102 North-Holland, Amsterdam (1980). Zbl 0443.03021, MR 0597342
Reference: [10] Nyikos, P. J.: Various topologies on trees.Proceedings of the Tennessee Topology Conference, Nashville, TN, USA, June 10-11, 1996 World Scientific Singapore P. R. Misra et al. 167-198 (1997). Zbl 0913.54028, MR 1607401
Reference: [11] Douwen, E. K. van, Lutzer, D. J.: A note on paracompactness in generalized ordered spaces.Proc. Am. Math. Soc. 125 (1997), 1237-1245. MR 1396999, 10.1090/S0002-9939-97-03902-6
Reference: [12] Douwen, E. K. van, Pfeffer, W. F.: Some properties of the Sorgenfrey line and related spaces.Pac. J. Math. 81 (1979), 371-377. MR 0547605, 10.2140/pjm.1979.81.371
.

Files

Files Size Format View
CzechMathJ_63-2013-3_11.pdf 288.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo