Previous |  Up |  Next

Article

Title: Periodic solution to a multispecies predator-prey competition dynamic system with Beddington-DeAngelis functional response and time delay (English)
Author: Lin, Xiaojie
Author: Du, Zengji
Author: Lv, Yansen
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 6
Year: 2013
Pages: 673-687
Summary lang: English
.
Category: math
.
Summary: In this paper, we are concerned with a delayed multispecies competition predator-prey dynamic system with Beddington-DeAngelis functional response. Some sufficient conditions which guarantee the existence of a positive periodic solution for the system are obtained by applying the Mawhin coincidence theory. The interesting thing is that the result is related to the delays, which is different from the corresponding ones known from literature (the results are delay-independent). (English)
Keyword: multispecies predator-prey model
Keyword: competition dynamic system
Keyword: positive periodic solution
Keyword: Beddington-DeAngelis functional
Keyword: time delays response
MSC: 34C25
MSC: 92D25
idZBL: Zbl 06312921
idMR: MR3162754
DOI: 10.1007/s10492-013-0034-2
.
Date available: 2013-11-09T20:18:09Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143505
.
Reference: [1] Beddington, J. R.: Mutual interference between parasites or predators and its effect on searching efficiency.Journal of Animal Ecology 44 (1975), 331-340. 10.2307/3866
Reference: [2] Beretta, E., Kuang, Y.: Convergence results in a well-known delayed predator-prey system.J. Math. Anal. Appl. 204 (1996), 840-853. Zbl 0876.92021, MR 1422776, 10.1006/jmaa.1996.0471
Reference: [3] Bohner, M., Fan, M., Zhang, J.: Existence of periodic solutions in predator-prey and competition dynamic systems.Nonlinear Anal., Real World Appl. 7 (2006), 1193-1204. Zbl 1104.92057, MR 2260908, 10.1016/j.nonrwa.2005.11.002
Reference: [4] Cai, Z., Huang, L., Chen, H.: Positive periodic solution for a multispecies competition-predator system with Holling III functional response and time delays.Appl. Math. Comput. 217 (2011), 4866-4878. Zbl 1206.92041, MR 2763275, 10.1016/j.amc.2010.10.014
Reference: [5] DeAngelis, D. L., Goldstein, R. A., O'Neill, R. V.: A model for tropic interaction.Ecology 56 (1975), 881-892. 10.2307/1936298
Reference: [6] Gaines, R. E., Mawhin, J. L.: Coincidence Degree, and Nonlinear Differential Equations.Lecture Notes in Mathematics 568 Springer, Berlin (1977). Zbl 0339.47031, MR 0637067, 10.1007/BFb0089537
Reference: [7] Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics.Mathematics and its Applications 74 Kluwer Academic Publishers, Dordrecht (1992). Zbl 0752.34039, MR 1163190
Reference: [8] Kuang, Y.: Delay Differential Equations: with Applications in Population Dynamics.Mathematics in Science and Engineering 191 Academic Press, Boston (1993). Zbl 0777.34002, MR 1218880
Reference: [9] Li, Y.: Periodic solutions for delay Lotka-Volterra competition systems.J. Math. Anal. Appl. 246 (2000), 230-244. Zbl 0972.34057, MR 1761160, 10.1006/jmaa.2000.6784
Reference: [10] Liu, G., Yan, J.: Positive periodic solutions of neutral predator-prey model with Beddington-DeAngelis functional response.Comput. Math. Appl. 61 (2011), 2317-2322. Zbl 1219.34091, MR 2785608, 10.1016/j.camwa.2010.09.067
Reference: [11] Lu, S.: On the existence of positive periodic solutions to a Lotka-Volterra cooperative population model with multiple delays.Nonlinear Anal., Theory Methods Appl. 68 (2008), 1746-1753. Zbl 1139.34317, MR 2388847, 10.1016/j.na.2007.01.003
Reference: [12] MacDonald, N.: Biological Delay Systems: Linear Stability Theory.Cambridge Studies in Mathematical Biology 9 Cambridge University Press, Cambridge (1989). Zbl 0669.92001, MR 0996637
Reference: [13] Yang, S. J., Shi, B.: Periodic solution for a three-stage-structured predator-prey system with time delay.J. Math. Anal. Appl. 341 (2008), 287-294. Zbl 1144.34048, MR 2394083, 10.1016/j.jmaa.2007.10.025
Reference: [14] Zeng, Z., Fan, M.: Study on a non-autonomous predator-prey system with Beddington-DeAngelis functional response.Math. Comput. Modelling 48 (2008), 1755-1764. Zbl 1187.34052, MR 2473405, 10.1016/j.mcm.2008.05.052
.

Files

Files Size Format View
AplMat_58-2013-6_4.pdf 678.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo