Title:
|
Sample $d$-copula of order $m$ (English) |
Author:
|
González-Barrios, José M. |
Author:
|
Hernández-Cedillo, María M. |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
49 |
Issue:
|
5 |
Year:
|
2013 |
Pages:
|
663-691 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we analyze the construction of $d$-copulas including the ideas of Cuculescu and Theodorescu [5], Fredricks et al. [15], Mikusiński and Taylor [25] and Trutschnig and Fernández-Sánchez [33]. Some of these methods use iterative procedures to construct copulas with fractal supports. The main part of this paper is given in Section 3, where we introduce the sample $d$-copula of order $m$ with $m≥2$, the central idea is to use the above methodologies to construct a new copula based on a sample. The greatest advantage of the sample $d$-copula is the fact that it is already an approximating $d$-copula and that it is easily obtained. We will see that these new copulas provide a nice way to study multivariate data with an approximating copula which is simpler than the empirical multivariate copula, and that the empirical copula is the restriction to a grid of a sample $d$-copula of order $n$. These sample $d$-copulas can be used to make statistical inference about the distribution of the data, as shown in Section 3. (English) |
Keyword:
|
$d$-copulas |
Keyword:
|
fractal copulas |
Keyword:
|
sample $d$-copulas of order $m$ |
MSC:
|
60A10 |
MSC:
|
60E05 |
MSC:
|
62E10 |
MSC:
|
62F05 |
idZBL:
|
Zbl 06239460 |
idMR:
|
MR3182633 |
. |
Date available:
|
2013-11-27T09:41:59Z |
Last updated:
|
2015-03-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143517 |
. |
Reference:
|
[1] Alsina, C., Frank, M. J., Schweizer, B.: Associative Functions: Triangular Norms And Copulas..World Scientific Publishing Co., Singapore 2006. Zbl 1100.39023, MR 2222258 |
Reference:
|
[2] Berger, J. O., Bernardo, J. M.: Ordered group reference priors with application to the multinomial problem..Biometrika 79 (1992), 1, 25-37. Zbl 0763.62014, MR 1158515, 10.1093/biomet/79.1.25 |
Reference:
|
[3] Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G., Roncalli, T.: Copulas for Finance. A Reading Quide and Some Applications..Groupe de recherche opérationnelle, Crédit Lyonnais, Paris 2000. |
Reference:
|
[4] Cressie, N., Read, T. R. C.: Multinomial goodness-of-fit tests..J. Roy. Statist. Soc., Ser. B 46 (1984), 3, 440-464. Zbl 0571.62017, MR 0790631 |
Reference:
|
[5] Cuculescu, I., Theodorescu, R.: Copulas: Diagonals, tracks..Rev. Roumaine Math. Pures Appl. 46 (2001), 6, 731-742. Zbl 1032.60009, MR 1929521 |
Reference:
|
[6] Amo, E. de, Carrillo, M. Díaz, Fernández-Sánchez, J.: Measure-preserving functions and the independence copula..Mediterr. J. Math. 8 (2011), 431-450. MR 2824591, 10.1007/s00009-010-0073-9 |
Reference:
|
[7] Amo, E. de, Carrillo, M. Díaz, Fernández-Sánchez, J.: Copulas and associated fractal sets..J. Math. Anal. Appl. 386 (2012), 528-541. MR 2834765, 10.1016/j.jmaa.2011.08.017 |
Reference:
|
[8] Deheuvels, P.: La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d'indépendance..Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274-292. Zbl 0422.62037, MR 0573609 |
Reference:
|
[9] Durante, F., Quesada-Molina, J. J., Úbeda-Flores, M.: On a family of multivariate copulas for aggregation processes..Inform. Sci. 177 (2007), 5715-5724. Zbl 1132.68761, MR 2362216, 10.1016/j.ins.2007.07.019 |
Reference:
|
[10] Durante, F., Fernández-Sánchez, J.: Multivariate shuffles and approximation copulas..Statist. Probab. Lett. 80 (2010), 1827-1834. MR 2734248, 10.1016/j.spl.2010.08.008 |
Reference:
|
[11] Durante, F., Fernández-Sánchez, J., Sempi, C.: Sklar's theorem obtained via regularization techniques.Nonlinear Anal. 75 (2012), 2, 769-774. Zbl 1229.62062, MR 2847456, 10.1016/j.na.2011.09.006 |
Reference:
|
[12] Durante, F., Fernández-Sánchez, J., Sempi, C.: A note on the notion of singular copula..Fuzzy Sets and Systems 211 (2013), 120-122. MR 2991801, 10.1016/j.fss.2012.04.005 |
Reference:
|
[13] Fermanian, J. D., Radulović, D., Wegcamp, M.: Weak convergence of empirical copula..Bernoulli 10 (2004), 5, 847-860. MR 2093613, 10.3150/bj/1099579158 |
Reference:
|
[14] Fernández-Sánchez, J., Nelsen, R. B., Úbeda-Flores, M.: Multivariate copulas, quasi-copulas and lattices..Statist. Probab. Lett. 81 (2011), 1365-1369. Zbl 1219.62086, MR 2811851, 10.1016/j.spl.2011.04.004 |
Reference:
|
[15] Fredricks, G. A., Nelsen, R. B., Rodríguez-Lallena, J. A.: Copulas with fractal supports..Insurance Math. Econom. 37 (2005), 42-48. Zbl 1098.60018, MR 2156595, 10.1016/j.insmatheco.2004.12.004 |
Reference:
|
[16] Genest, C., Rémillard, B., Beaudoin, D.: Goodness-of-fit tests for copulas: A review and a power study..Insurance Math. Econom. 44 (2009), 199-213. Zbl 1161.91416, MR 2517885, 10.1016/j.insmatheco.2007.10.005 |
Reference:
|
[17] Hernández-Cedillo, M. M.: Topics on Multivariate Copulas and Applications..Ph.D. Thesis, Universidad Nacional Autónoma de México 2013, preprint. |
Reference:
|
[18] Hofert, M., Kojadinovic, I., Maechler, M., Yan, J.: copula: Multivariate Dependence with Copulas. R package version 0.999-5..http://CRAN.R-project.org/package=copula, 2012. |
Reference:
|
[19] Hogg, R. H., Craig, A. T.: Introduction to Mathematical Statistics. Fourth edition..Collier Macmillan International Eds., New York-London 1978. MR 0467974 |
Reference:
|
[20] Jaworski, P.: On copulas and their diagonals..Inform. Sci. 179 (2009), 2863-2871. Zbl 1171.62332, MR 2547755, 10.1016/j.ins.2008.09.006 |
Reference:
|
[21] Mahmoud, H. M.: Polya urn models..Texts Statist. Sci. Ser., Chapman and Hall/CRC, New York 2008. Zbl 1149.60005, MR 2435823, 10.1201/9781420059847.ch3 |
Reference:
|
[22] Mai, J. F., Scherer, M.: Simulating Copulas: Stochastic Models, Sampling Algorithms and Applications..Series in Quantitative Finance 4, Imperial College Press, London 2012. MR 2906392 |
Reference:
|
[23] Marcus, M.: Some properties and applications of double stochastic matrices..Amer. Math. Monthly 67 (1960), 215-221. MR 0118732, 10.2307/2309679 |
Reference:
|
[24] Mesiar, R., Sempi, C.: Ordinal sums and idempotent of copulas..Aequat. Math. 79, (2010), 1-2, 39-52. MR 2640277, 10.1007/s00010-010-0013-6 |
Reference:
|
[25] Mikusiński, P., Taylor, M. D.: Some approximations of $n$-copulas..Metrika 72 (2010), 385-414. Zbl 1197.62050, MR 2746583, 10.1007/s00184-009-0259-y |
Reference:
|
[26] Nelsen, R. B.: An Introduction to Copulas..Lecture Notes in Statist. 139, second edition, Springer, New York 2006. Zbl 1152.62030, MR 2197664 |
Reference:
|
[27] Read, T. R. C., Cressie, N.: Goodness-of-fit Statistics for Discrete Multivariate Data..Springer Series in Statist., Springer, New York 1988. Zbl 0663.62065, MR 0955054 |
Reference:
|
[28] Rodríguez-Lallena, J. A., Úbeda-Flores, M.: Distribution functions of multivariate copulas..Statist. Probab. Lett. 64 (2003), 41-50. Zbl 1113.62330, MR 1995808, 10.1016/S0167-7152(03)00129-9 |
Reference:
|
[29] Rychlik, T.: Distributions and expectations of order statistics for possible dependent random variables..J. Multivariate Anal. 48 (1994), 31-42. MR 1256833, 10.1016/0047-259X(94)80003-E |
Reference:
|
[30] Sherman, S.: Doubly stochastic matrices and complex vector spaces..Amer. J. Math. 77 (1955), 245-246. Zbl 0064.13204, MR 0067840, 10.2307/2372529 |
Reference:
|
[31] Siburg, K. F., Stoimenov, P. A.: Gluing copulas..Comm. Statist. Theory and Methods. 37 (2008), 3124-3134. MR 2467756, 10.1080/03610920802074844 |
Reference:
|
[32] Sklar, A.: Fonctions de répartition à $n$ dimensions et leurs marges..Publ. Inst. Statist. Univ. Paris 8 (1959), 229-231. MR 0125600 |
Reference:
|
[33] Trutschnig, W., Fernández-Sánchez, J.: Idempotent and multivariate copulas with fractal support..J. Statist. Plan. Infer. 142 (2012), 3086-3096. MR 2956795, 10.1016/j.jspi.2012.06.012 |
Reference:
|
[34] Trutschnig, W.: Idempotent copulas with fractal support..Adv. Comp. Intel. 298, (2012), 3, 161-170. Zbl 1252.37073 |
. |