Previous |  Up |  Next

Article

Title: Verification of functional a posteriori error estimates for obstacle problem in 1D (English)
Author: Harasim, Petr
Author: Valdman, Jan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 5
Year: 2013
Pages: 738-754
Summary lang: English
.
Category: math
.
Summary: We verify functional a posteriori error estimate for obstacle problem proposed by Repin. Simplification into 1D allows for the construction of a nonlinear benchmark for which an exact solution of the obstacle problem can be derived. Quality of a numerical approximation obtained by the finite element method is compared with the exact solution and the error of approximation is bounded from above by a majorant error estimate. The sharpness of the majorant error estimate is discussed. (English)
Keyword: obstacle problem
Keyword: a posteriori error estimate
Keyword: functional majorant
Keyword: finite element method
Keyword: variational inequalities
Keyword: Uzawa algorithm
MSC: 34B15
MSC: 49J40
MSC: 49M25
MSC: 65K15
MSC: 65L60
MSC: 74K05
MSC: 74M15
MSC: 74S05
idZBL: Zbl 1278.49035
idMR: MR3182637
.
Date available: 2013-11-27T09:49:49Z
Last updated: 2015-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143522
.
Reference: [1] Ainsworth, M., Oden, J. T.: A Posteriori Error Estimation in Finite Element Analysis..Wiley and Sons, New York 2000. Zbl 1008.65076, MR 1885308
Reference: [2] Babuška, I., Strouboulis, T.: The Finite Element Method and its Reliability..Oxford University Press, New York 2001. MR 1857191
Reference: [3] Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations..Birkhäuser, Berlin 2003. Zbl 1020.65058, MR 1960405
Reference: [4] Braess, D., Hoppe, R. H. W., Schöberl, J.: A posteriori estimators for obstacle problems by the hypercircle method..Comp. Visual. Sci. 11 (2008), 351-362. MR 2425501, 10.1007/s00791-008-0104-2
Reference: [5] Brezi, F., Hager, W. W., Raviart, P. A.: Error estimates for the finite element solution of variational inequalities I..Numer. Math. 28 (1977), 431-443. MR 0448949, 10.1007/BF01404345
Reference: [6] Buss, H., Repin, S.: A posteriori error estimates for boundary value problems with obstacles..In: Proc. 3rd European Conference on Numerical Mathematics and Advanced Applications, Jÿvaskylä 1999, World Scientific 2000, pp. 162-170. Zbl 0968.65041, MR 1936177
Reference: [7] Carstensen, C., Merdon, C.: A posteriori error estimator completition for conforming obstacle problems..Numer. Methods Partial Differential Equations 29 (2013), 667-�692. MR 3022903, 10.1002/num.21728
Reference: [8] Dostál, Z.: Optimal Quadratic Programming Algorithms..Springer 2009. MR 2492434
Reference: [9] Falk, R. S.: Error estimates for the approximation of a class of variational inequalities..Math. Comput. 28 (1974), 963-971. Zbl 0297.65061, MR 0391502, 10.1090/S0025-5718-1974-0391502-8
Reference: [10] Fuchs, M., Repin, S.: A Posteriori Error Estimates for the Approximations of the Stresses in the Hencky Plasticity Problem..Numer. Funct. Anal. Optim. 32 (2011), 610-640. MR 2795532, 10.1080/01630563.2011.571802
Reference: [11] Glowinski, R., Lions, J. L., Trémolieres, R.: Numerical Analysis of Variational Inequalities..North-Holland 1981. Zbl 0463.65046, MR 0635927
Reference: [12] Hlaváček, I., Haslinger, J., Nečas, J., Lovíšek, J.: Solution of Variational Inequalities in Mechanics..Applied Mathematical Sciences 66, Springer-Verlag, New York 1988. Zbl 0654.73019, MR 0952855
Reference: [13] Kikuchi, N., Oden, J. T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods..SIAM 1995. Zbl 0685.73002, MR 0961258
Reference: [14] Kraus, J., Tomar, S.: Algebraic multilevel iteration method for lowest-order Raviart-Thomas space and applications..Internat. J. Numer. Meth. Engrg. 86 (2011), 1175-1196. Zbl 1235.65130, MR 2817075, 10.1002/nme.3103
Reference: [15] Lions, J. L., Stampacchia, G.: Variational inequalities..Comm. Pure Appl. Math. XX(3) (1967), 493-519. Zbl 0152.34601, MR 0216344, 10.1002/cpa.3160200302
Reference: [16] Neittaanmäki, P., Repin, S.: Reliable Methods for Computer Simulation (Error Control and a Posteriori Estimates)..Elsevier 2004. Zbl 1076.65093, MR 2095603
Reference: [17] Repin, S.: A posteriori error estimation for variational problems with uniformly convex functionals..Math. Comput. 69(230) (2000), 481-500. Zbl 0949.65070, MR 1681096, 10.1090/S0025-5718-99-01190-4
Reference: [18] Repin, S.: A posteriori error estimation for nonlinear variational problems by duality theory..Zapiski Nauchn. Semin. POMI 243 (1997), 201-214. Zbl 0904.65064, MR 1629741
Reference: [19] Repin, S.: Estimates of deviations from exact solutions of elliptic variational inequalities..Zapiski Nauchn. Semin. POMI 271 (2000), 188-203. Zbl 1118.35320, MR 1810617
Reference: [20] Repin, S.: A Posteriori Estimates for Partial Differential Equations..Walter de Gruyter, Berlin 2008. Zbl 1162.65001, MR 2458008
Reference: [21] Repin, S., Valdman, J.: Functional a posteriori error estimates for problems with nonlinear boundary conditions..J. Numer. Math. 16 (2008), 1, 51-81. Zbl 1146.65054, MR 2396672, 10.1515/JNUM.2008.003
Reference: [22] Repin, S., Valdman, J.: Functional a posteriori error estimates for incremental models in elasto-plasticity..Cent. Eur. J. Math. 7 (2009), 3, 506-519. Zbl 1269.74202, MR 2534470, 10.2478/s11533-009-0035-2
Reference: [23] Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces..SIAM 2011. Zbl 1235.49001, MR 2839219
Reference: [24] Valdman, J.: Minimization of functional majorant in a posteriori error analysis based on $H(div)$ multigrid-preconditioned CG method..Advances in Numerical Analysis (2009). Zbl 1200.65095, MR 2739760
Reference: [25] Zou, Q., Veeser, A., Kornhuber, R., Gräser, C.: Hierarchical error estimates for the energy functional in obstacle problems..Numer. Math. 117 (2012), 4, 653-677. Zbl 1218.65067, MR 2776914, 10.1007/s00211-011-0364-5
.

Files

Files Size Format View
Kybernetika_49-2013-5_5.pdf 654.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo