Previous |  Up |  Next

Article

Title: Stability analysis for neutral stochastic systems with mixed delays (English)
Author: Chen, Huabin
Author: Hu, Peng
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 5
Year: 2013
Pages: 780-791
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with the problem of the exponential stability in mean square moment for neutral stochastic systems with mixed delays, which are composed of the retarded one and the neutral one, respectively. Based on an integral inequality, a delay-dependent stability criterion for such systems is obtained in terms of linear matrix inequality (LMI) to ensure a large upper bounds of the neutral delay and the retarded delay by dividing the neutral delay interval into multiple segments. A new Lyapunov-Krasovskii functional is constructed with different weighting matrices corresponding to different segments. And the developed method can well reduce the conservatism compared with the existing results. Finally, an illustrative numerical example is given to show the effectiveness of our proposed method. (English)
Keyword: neutral stochastic time-delay systems
Keyword: delay decomposition approach
Keyword: exponential stability
Keyword: linear matrix inequality (LMI)
MSC: 34K20
MSC: 34K50
MSC: 93D09
MSC: 93E03
MSC: 93E15
idZBL: Zbl 1278.93189
idMR: MR3182640
.
Date available: 2013-11-27T09:55:03Z
Last updated: 2015-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143525
.
Reference: [1] Boyd, B., Ghaoui, L. E., Feron, E., Balakrishnan, V. B.: Linear Matrix Inequalities in Systems and Control Theory..SIAM, Philadelphia 1994. MR 1284712
Reference: [2] Chen, G., Shen, Y.: Robust $H_\infty$ filter design for neutral stochastic uncertain systems with time-varying delay..J. Math. Anal. Appl. 353 (2009), 1, 196-204. Zbl 1161.93025, MR 2508857, 10.1016/j.jmaa.2008.11.062
Reference: [3] Chen, W.-H., Zheng, W.-X., Shen, Y.: Delay-dependent stochastic stability and $H_\infty$-control of uncertain neutral stochastic systems with time delay..IEEE Trans. Automat. Control 54 (2009), 7, 1660-1667. MR 2535767, 10.1109/TAC.2009.2017981
Reference: [4] Chen, Y., Zheng, W.-X., Xue, A.: A new result on stability analysis for stochastic neutral systems..Automatica 46 (2010), 12, 2100-2104. Zbl 1205.93160, MR 2878237, 10.1016/j.automatica.2010.08.007
Reference: [5] Du, B., Lam, J., Shu, Z., Wang, Z.: A delay-partitioning projection approach to stability analysis of continuous systems with multiple delay components..IET-Control Theory Appl. 3 (2009), 4, 383-390. MR 2512656
Reference: [6] Fridman, E.: New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems..Syst. Control Lett. 43 (2001), 4, 309-319. Zbl 0974.93028, MR 2008812, 10.1016/S0167-6911(01)00114-1
Reference: [7] Gouaisbaut, F., Peaucelle, D.: Delay-dependent stability analysis of linear time delay systems..In: Proc. IFAC Workshop Time Delay Syst. 2006, pp. 1-12.
Reference: [8] Gao, H., Fei, Z., Lam, J., Du, B.: Further results on exponential estimates of markovian jump systems with mode-dependent time-varying delays..IEEE Trans. Automaat. Control 56 (2011), 1, 223-229. MR 2777223, 10.1109/TAC.2010.2090575
Reference: [9] Gao, H., Chen, T.: New results on stability of discrete-time systems with time-varying state delay..IEEE Trans. Automat. Control 52 (2007), 2, 328-334. MR 2295017, 10.1109/TAC.2006.890320
Reference: [10] Gu, K., Kharitonov, V., Chen, J.: Stability of Time-delay Systems..Birkhauser, Boston 2003. Zbl 1039.34067
Reference: [11] Huang, L., Mao, X.: Delay-dependent exponential stability of neutral stochastic delay systems..IEEE Trans. Automat. Control 54 (2009), 1, 147-152. MR 2478078, 10.1109/TAC.2008.2007178
Reference: [12] Han, Q.-L.: A discrete delay decomposition approach stability of linear retarded and neutral systems..Automatica 45 (2009), 2, 517-524. MR 2527352, 10.1016/j.automatica.2008.08.005
Reference: [13] He, Y., Wu, M., She, J.-H., Liu, G.-P.: Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays..Syst. Control Lett. 51 (2004), 1, 57-65. Zbl 1157.93467, MR 2026262, 10.1016/S0167-6911(03)00207-X
Reference: [14] Jerzy, K.: Stochastic controllability and minimum energy control of systems with multiple delays in control..Appl. Math. Comput. 206 (2008), 2, 704-715. Zbl 1167.93008, MR 2483043, 10.1016/j.amc.2008.08.059
Reference: [15] Jerzy, K.: Stochastic controllability of linear systems with state delays..Internat. J. Appl. Math. Comput. Sci. 17 (2007), 1, 5-13. Zbl 1133.93307, MR 2310791
Reference: [16] Li, X.-G., Zhu, X.-J., Cela, A., Reama, A.: Stability analysis of neutral systems with mixed delays..Automatica 44 (2008), 8, 2968-2972. Zbl 1152.93450, MR 2527226
Reference: [17] Li, H. F., Gu, K. Q.: Discretized Lyapunov-Krasovskii functional for coupled differential-difference equations with multiple delay channels..Automatica 46 (2010), 5, 902-909. Zbl 1191.93120, MR 2877164, 10.1016/j.automatica.2010.02.007
Reference: [18] Mao, X.: Stochastic Differential Equations and Their Applications..Horwood Publication, Chichester 1997. Zbl 0892.60057, MR 1475218
Reference: [19] Wu, L. G., Feng, Z. G., Zheng, W.-X.: Exponential stability analysis for delayed neural networks with switching parameters: average dwell time approach..IEEE Trans. Neural Netw. 21 (2010), 9, 1396-1407. 10.1109/TNN.2010.2056383
Reference: [20] Wang, Y., Wang, Z., Liang, J.: On robust stability of stochastic genetic regulatory networks with time delays: A delay fractioning approach..IEEE Trans. Syst. Man Cybernet. B 40 (2010), 3, pp. 729-740. 10.1109/TSMCB.2009.2026059
Reference: [21] Xu, S., Shi, P., Chu, Y., Zou, Y.: Robust stochastic stabilization and $H_\infty$ control of uncertain neutral stochastic time-delay systems..J. Math. Anal. Appl. 314 (2006), 1, 1-16. Zbl 1127.93053, MR 2183533, 10.1016/j.jmaa.2005.03.088
Reference: [22] Zhu, S., Li, Z., Zhang, C.: Delay decomposition approach to delay-dependent stability for singular time-delay systems..IET-Control Theory Appl. 4 (2010), 11, 2613-2620. MR 2798844
Reference: [23] Zhou, S., Zhou, L.: Improved exponential stability criteria and stabilization of T-S model-based neutral systems..IET-Control Theory Appl. 4 (2010), 12, 2993-3002. MR 2808635
.

Files

Files Size Format View
Kybernetika_49-2013-5_8.pdf 295.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo