Previous |  Up |  Next

Article

Title: Monotonicity properties of oscillatory solutions of differential equation $(a(t)\vert y^{\prime }\vert ^{p-1}y^{\prime })^{\prime }+f(t,y,y^{\prime })=0$ (English)
Author: Bartušek, Miroslav
Author: Kokologiannaki, Chrysi G.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 3
Year: 2013
Pages: 199-207
Summary lang: English
.
Category: math
.
Summary: We obtain monotonicity results concerning the oscillatory solutions of the differential equation $(a(t)\vert y^{\prime }\vert ^{p-1}y^{\prime })^{\prime }+f(t,y,y^{\prime })=0$. The obtained results generalize the results given by the first author in [1] (1976). We also give some results concerning a special case of the above differential equation. (English)
Keyword: monotonicity
Keyword: oscillatory solutions
MSC: 34C10
MSC: 34C15
MSC: 34D05
idZBL: Zbl 06321158
idMR: MR3144182
DOI: 10.5817/AM2013-3-199
.
Date available: 2013-12-02T11:25:49Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143532
.
Reference: [1] Bartušek, M.: Monotonicity theorems concerning differential equations $y^{\prime \prime }+f(t,y,y^{\prime })=0$.Arch. Math. (Brno) 12 (4) (1976), 169–178. MR 0430410
Reference: [2] Bartušek, M.: Monotonicity theorems for second order non-linear differential equations.Arch. Math. (Brno) 16 (3) (1980), 127–136. MR 0594458
Reference: [3] Bartušek, M.: On properties of oscillatory solutions of nonlinear differential equations of the $n$-th order.Diff. Equat. and Their Appl., Equadiff 6, vol. 1192, Lecture Notes in Math., Berlin, 1985, pp. 107–113.
Reference: [4] Bartušek, M.: On oscillatory solutions of differential inequalities.Czechoslovak Math. J. 42 (117) (1992), 45–52. Zbl 0756.34033, MR 1152168
Reference: [5] Bartušek, M.: Singular solutions for the differential equation with $p$-Laplacian.Arch. Math. (Brno) 41 (2005), 123–128. Zbl 1116.34325, MR 2142148
Reference: [6] Bartušek, M., Došlá, Z., Cecchi, M., Marini, M.: On oscillatory solutions of quasilinear differential equations.J. Math. Anal. Appl. 320 (2006), 108–120. Zbl 1103.34016, MR 2230460, 10.1016/j.jmaa.2005.06.057
Reference: [7] Došlá, Z., Cecchi, M., Marini, M.: On second order differential equations with nonhomogenous $\Phi $–Laplacian.Boundary Value Problems 2010 (2010), 17pp., ID 875675. MR 2595170
Reference: [8] Došlá, Z., Háčik, M., Muldon, M. E.: Further higher monotonicity properties of Sturm-Liouville function.Arch. Math. (Brno) 29 (1993), 83–96. MR 1242631
Reference: [9] Došlý, O., Řehák, P.: Half-linear differential equations.Elsevier, Amsterdam, 2005. Zbl 1090.34001, MR 2158903
Reference: [10] Kiguradze, I., Chanturia, T.: Asymptotic properties of solutions of nonautonomous ordinary differential equations.Kluwer, Dordrecht, 1993. Zbl 0782.34002
Reference: [11] Lorch, L., Muldon, M. E., Szego, P.: Higher monotonicity of certain Sturm-Liouville functions III.Canad. J. Math. 22 (1970), 1238–1265. MR 0274845, 10.4153/CJM-1970-142-1
Reference: [12] Mirzov, J. D.: Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations.Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math., Masaryk University, Brno, 2001. MR 2144761
Reference: [13] Naito, M.: Existence of positive solutions of higher-order quasilinear ordinary differential equations.Ann. Mat. Pura Appl. (4) 186 (2007), 59–84. Zbl 1232.34054, MR 2263331
Reference: [14] Rohleder, M.: On the existence of oscillatory solutions of the second order nonlinear ODE.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 51 (2) (2012), 107–127. Zbl 1279.34050, MR 3058877
.

Files

Files Size Format View
ArchMathRetro_049-2013-3_4.pdf 521.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo