Previous |  Up |  Next

Article

Title: Two-sided Tolerance Intervals in a Simple Linear Regression (English)
Author: Chvosteková, Martina
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 52
Issue: 2
Year: 2013
Pages: 31-41
Summary lang: English
.
Category: math
.
Summary: Numerical results for a simple linear regression indicate that the non-simultaneous two-sided tolerance intervals nearly satisfy the condition of multiple-use confidence intervals, see Lee and Mathew (2002), but the numerical computation of the limits of the multiple-use confidence intervals is needed. We modified the Lieberman–Miller method (1963) for computing the simultaneous two-sided tolerance intervals in a simple linear regression with independent normally distributed errors. The suggested tolerance intervals are the narrowest of all the known simultaneous two-sided tolerance intervals. The computation of the multiple-use confidence intervals based on the new simultaneous two-sided tolerance intervals is simple and fast. (English)
Keyword: multiple-use confidence interval
Keyword: simultaneous two-sided tolerance interval
MSC: 62F25
MSC: 62J05
idZBL: Zbl 06296012
idMR: MR3202377
.
Date available: 2013-12-18T15:20:48Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143536
.
Reference: [1] Chvosteková, M.: Simultaneous two-sided tolerance intervals for a univariate linear regression model. Communications in Statistics, Theory and Methods 42 (2013), 1145–1152. MR 3031273, 10.1080/03610926.2012.724502
Reference: [2] Chvosteková, M.: Determination of two-sided tolerance interval in a linear regression model. Forum Statisticum Slovacum 6 (2010), 79–84.
Reference: [3] Chvosteková, M., Witkovský, V.: Exact likelihood ratio test for the parameters of the linear regression model with normal errors. Measurement Science Review 9 (2009), 1–8. 10.2478/v10048-009-0003-9
Reference: [4] Krishnamoorthy, K., Mathew, T.: Statistical Tolerance Regions: Theory, Applications, and Computation. Wiley series in probability and statistics, Wiley, Chichester, 2009. MR 2500599
Reference: [5] Lee, Y., Mathew, T.: Advances on Theoretical and Methodological Aspects of Probability and Statistics. Taylor & Francis, London, 2002. MR 1987243
Reference: [6] Lieberman, G. J., Miller, R. G., Jr.: Simultaneous Tolerance intervals in regression. Biometrika 50 (1963), 155–168. Zbl 0124.35501, MR 0158472, 10.1093/biomet/50.1-2.155
Reference: [7] Lieberman, G. J., Miller, R. G., Hamilton, M. A.: Unlimited simultaneous discrimination intervals in regression. Biometrika 54 (1967), 133–145. MR 0217953, 10.1093/biomet/54.1-2.133
Reference: [8] Limam, M. M. T., Thomas, R.: Simultaneous tolerance intervals for the linear regression model. Journal of the American Statistical Association 83 (1988), 801–804. Zbl 0649.62030, MR 0963808, 10.1080/01621459.1988.10478666
Reference: [9] Mee, R. W., Eberhardt, K. R.: A Comparison of Uncertainty Criteria for Calibration. Technometrics 38 (1996), 221–229. MR 1411879, 10.1080/00401706.1996.10484501
Reference: [10] Mee, R. W., Eberhardt, K. R., Reeve, C. P.: Calibration and simultaneous tolerance intervals for regression. Technometrics 33 (1991), 211–219. MR 1110358, 10.1080/00401706.1991.10484808
Reference: [11] Scheffé, H.: A statistical theory of calibration. The Annals of Statistics 1 (1973), 1–37. MR 0336920, 10.1214/aos/1193342379
Reference: [12] Wilson, A. L.:: An approach to simultaneous tolerance intervals in regression. The Annals of Mathematical Statistics 38 (1967), 1536–1540. Zbl 0183.20902, MR 0217954, 10.1214/aoms/1177698707
Reference: [13] Witkovský, V.:: On exact multiple-use linear calibration confidence intervals. In: MEASUREMENT 2013: 9th International Conference on Measurement, Smolenice, Slovakia, 2013, 35–38.
.

Files

Files Size Format View
ActaOlom_52-2013-2_3.pdf 263.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo