Previous |  Up |  Next

Article

Title: Covariance Structure of Principal Components for Three-Part Compositional Data (English)
Author: Hrůzová, Klára
Author: Hron, Karel
Author: Rypka, Miroslav
Author: Fišerová, Eva
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 52
Issue: 2
Year: 2013
Pages: 61-69
Summary lang: English
.
Category: math
.
Summary: Statistical analysis of compositional data, multivariate observations carrying only relative information (proportions, percentages), should be performed only in orthonormal coordinates with respect to the Aitchison geometry on the simplex. In case of three-part compositions it is possible to decompose the covariance structure of the well-known principal components using variances of log-ratios of the original parts. They seem to be helpful for the interpretation of these special orthonormal coordinates. Theoretical results are applied to real-world data containing relative structure of landscape use in German regions. (English)
Keyword: compositional data
Keyword: covariance structure
Keyword: principal components
Keyword: log-contrasts
MSC: 15A18
MSC: 62H25
MSC: 62H99
MSC: 62J10
idZBL: Zbl 06296015
idMR: MR3202380
.
Date available: 2013-12-18T15:23:06Z
Last updated: 2014-07-30
Stable URL: http://hdl.handle.net/10338.dmlcz/143539
.
Reference: [1] Aitchison, J.: The Statistical Analysis of Compositional Data. Chapman and Hall, London, 1986. Zbl 0688.62004, MR 0865647
Reference: [2] Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barceló-Vidal, C.: Isometric logratio transformations for compositional data analysis. Math. Geol. 35 (2003), 279–300. MR 1986165, 10.1023/A:1023818214614
Reference: [3] Egozcue, J. J., Pawlowsky-Glahn, V.: Groups of parts and their balances in compositional data analysis. Math. Geol. 37 (2005), 795–828. Zbl 1177.86018, MR 2183639, 10.1007/s11004-005-7381-9
Reference: [4] Filzmoser, P., Hron, K.: Robustness for compositional data. In: Becker, C., Fried, R., Kuhnt, S. (eds.): Robustness and complex data structures, Springer, Heidelberg, 2013, 117–131. MR 3135877
Reference: [5] Fišerová, E., Hron, K.: On the interpretation of orthonormal coordinates for compositional data. Math. Geosci. 43 (2011), 455–468. 10.1007/s11004-011-9333-x
Reference: [6] Fišerová, E., Hron, K.: Statistical inference in orthogonal regression for three-part compositional data using a linear model with type-II constraints. Communications in Statistics – Theory and Methods 41 (2012), 2367–2385. Zbl 1270.62097, MR 2927714
Reference: [7] Golub, G. H.: Modified matrix eigenvalue problems. SIAM Review 15 (1973), 318–334. Zbl 0254.65027, MR 0329227, 10.1137/1015032
Reference: [8] Pawlowsky-Glahn, V., Buccianti, A.: Compositional data analysis: Theory and applications. Wiley, Chichester, 2011. MR 2920574
Reference: [9] R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 2013.
Reference: [10] Härdle, W. K., Simar, L.: Applied Multivariate Statistical Analysis. Springer-Verlag, Berlin, Heidelberg, 2012. Zbl 1266.62032, MR 2367300
Reference: [11] Jackson, J. D., Dunlevy, J. A.: Orthogonal least squares and the interchangeability of alternative proxy variables in the social sciences. J. Roy. Statist. Soc. Ser. D (The Statistician) 37, 1 (1988), 7–14.
Reference: [12] Landesbetrieb für Statistik und Kommunikationstechnologie Niedersachsen: Kreiszahlen: Ausgewählte Regional Daten für Deutschland. Landesbetrieb für Statistik und Kommunikationstechnologie Niedersachsen, Hannover, 2012.
.

Files

Files Size Format View
ActaOlom_52-2013-2_6.pdf 241.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo