Title:
|
On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds (English) |
Author:
|
Hinterleitner, Irena |
Author:
|
Mikeš, Josef |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
49 |
Issue:
|
5 |
Year:
|
2013 |
Pages:
|
295-302 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we study fundamental equations of holomorphically projective mappings from manifolds with equiaffine connection onto (pseudo-) Kähler manifolds with respect to the smoothness class of connection and metrics. We show that holomorphically projective mappings preserve the smoothness class of connections and metrics. (English) |
Keyword:
|
holomorphically projective mapping |
Keyword:
|
smoothness class |
Keyword:
|
Kähler manifold |
Keyword:
|
manifold with affine connection |
Keyword:
|
fundamental equation |
MSC:
|
32Q15 |
MSC:
|
53B20 |
MSC:
|
53B21 |
MSC:
|
53B30 |
MSC:
|
53B35 |
MSC:
|
53C26 |
idZBL:
|
Zbl 06383791 |
idMR:
|
MR3159328 |
DOI:
|
10.5817/AM2013-5-295 |
. |
Date available:
|
2014-01-16T11:18:57Z |
Last updated:
|
2015-03-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143553 |
. |
Reference:
|
[1] al Lami, R. J. K., Škodová, M., Mikeš, J.: On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces.Arch. Math. (Brno) 42 (5) (2006), 291–299. Zbl 1164.53317, MR 2322415 |
Reference:
|
[2] Alekseevsky, D. V., Marchiafava, S.: Transformation of a quaternionic Kaehlerian manifold.C. R. Acad. Sci. Paris, Ser. I 320 (1995), 703–708. |
Reference:
|
[3] Apostolov, V., Calderbank, D. M. J., Gauduchon, P., Tønnesen–Friedman, Ch. W.: Extremal Kähler metrics on projective bundles over a curve.Adv. Math. 227 (6) (2011), 2385–2424. Zbl 1232.32011, MR 2807093, 10.1016/j.aim.2011.05.006 |
Reference:
|
[4] Beklemishev, D.V.: Differential geometry of spaces with almost complex structure.Geometria. Itogi Nauki i Tekhn., VINITI, Akad. Nauk SSSR, Moscow (1965), 165–212. |
Reference:
|
[5] Domashev, V. V., Mikeš, J.: Theory of holomorphically projective mappings of Kählerian spaces.Math. Notes 23 (1978), 160–163, transl. from Mat. Zametki 23(2) (1978), 297–304. 10.1007/BF01153160 |
Reference:
|
[6] Eisenhart, L. P.: Non–Riemannian Geometry.Princeton Univ. Press, 1926, AMS Colloq. Publ. 8 (2000). |
Reference:
|
[7] Hinterleitner, I.: On holomorphically projective mappings of e–Kähler manifolds.Arch. Math. (Brno) 48 (2012), 333–338. Zbl 1289.53038, MR 3007616, 10.5817/AM2012-5-333 |
Reference:
|
[8] Hinterleitner, I., Mikeš, J.: On F–planar mappings of spaces with affine connections.Note Mat. 27 (2007), 111–118. Zbl 1150.53009, MR 2367758 |
Reference:
|
[9] Hinterleitner, I., Mikeš, J.: Fundamental equations of geodesic mappings and their generalizations.J. Math. Sci. 174 (5) (2011), 537–554. Zbl 1283.53015, 10.1007/s10958-011-0316-8 |
Reference:
|
[10] Hinterleitner, I., Mikeš, J.: Projective equivalence and spaces with equi–affine connection.J. Math. Sci. 177 (2011), 546–550, transl. from Fundam. Prikl. Mat. 16 (2010), 47–54. MR 2786490, 10.1007/s10958-011-0479-3 |
Reference:
|
[11] Hinterleitner, I., Mikeš, J.: Geodesic Mappings and Einstein Spaces.Geometric Methods in Physics, Birkhäuser Basel, 2013, arXiv: 1201.2827v1 [math.DG], 2012, pp. 331–336. Zbl 1268.53049 |
Reference:
|
[12] Hinterleitner, I., Mikeš, J.: Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability.Miskolc Math. Notes 14 (2) (2013), 575–582. Zbl 1299.53041, MR 3144094 |
Reference:
|
[13] Hrdina, J.: Almost complex projective structures and their morphisms.Arch. Math. (Brno) 45 (2009), 255–264. Zbl 1212.53022, MR 2591680 |
Reference:
|
[14] Hrdina, J., Slovák, J.: Morphisms of almost product projective geometries.Proc. 10th Int. Conf. on Diff. Geom. and its Appl., DGA 2007, Olomouc, Hackensack, NJ: World Sci., 2008, pp. 253–261. Zbl 1168.53013, MR 2462798 |
Reference:
|
[15] Jukl, M., Juklová, L., Mikeš, J.: Some results on traceless decomposition of tensors.J. Math. Sci. 174 (2011), 627–640. 10.1007/s10958-011-0321-y |
Reference:
|
[16] Mikeš, J.: On holomorphically projective mappings of Kählerian spaces.Ukrain. Geom. Sb. 23 (1980), 90–98. Zbl 0463.53013 |
Reference:
|
[17] Mikeš, J.: Special F—planar mappings of affinely connected spaces onto Riemannian spaces.Moscow Univ. Math. Bull. 49 (1994), 15–21, transl. from Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1994, 18–24. Zbl 0896.53035 |
Reference:
|
[18] Mikeš, J.: Holomorphically projective mappings and their generalizations.J. Math. Sci. 89 (1998), 13334–1353. 10.1007/BF02414875 |
Reference:
|
[19] Mikeš, J., Pokorná, O.: On holomorphically projective mappings onto Kählerian spaces.Rend. Circ. Mat. Palermo (2) Suppl. 69 (2002), 181–186. Zbl 1023.53015, MR 1972433 |
Reference:
|
[20] Mikeš, J., Shiha, M., Vanžurová, A.: Invariant objects by holomorphically projective mappings of Kähler spaces.8th Int. Conf. APLIMAT 2009, 2009, pp. 439–444. |
Reference:
|
[21] Mikeš, J., Sinyukov, N. S.: On quasiplanar mappings of space of affine connection.Sov. Math. 27 (1983), 63–70, transl. from Izv. Vyssh. Uchebn. Zaved. Mat.. |
Reference:
|
[22] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and some Generalizations.Palacky University Press, Olomouc, 2009. Zbl 1222.53002, MR 2682926 |
Reference:
|
[23] Otsuki, T., Tashiro, Y.: On curves in Kaehlerian spaces.Math. J. Okayama Univ. 4 (1954), 57–78. Zbl 0057.14101 |
Reference:
|
[24] Petrov, A . Z.: Simulation of physical fields.Gravitatsiya i Teor. Otnositelnosti 4–5 (1968), 7–21. |
Reference:
|
[25] Prvanović, M.: Holomorphically projective transformations in a locally product space.Math. Balkanica 1 (1971), 195–213. |
Reference:
|
[26] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces.Moscow: Nauka, 1979. Zbl 0637.53020 |
Reference:
|
[27] Škodová, M., Mikeš, J., Pokorná, O.: On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces.Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 309–316. Zbl 1109.53019, MR 2152369 |
Reference:
|
[28] Stanković, M. S., Zlatanović, M. L., Velimirović, L. S.: Equitorsion holomorphically projective mappings of generalized Kaehlerian space of the first kind.Czechoslovak Math. J. 60 (2010), 635–653. Zbl 1224.53031, MR 2672406, 10.1007/s10587-010-0059-6 |
Reference:
|
[29] Yano, K.: Differential geometry on complex and almost complex spaces.vol. XII, Pergamon Press, 1965. Zbl 0127.12405 |
. |