Previous |  Up |  Next

Article

Title: On metrizability of locally homogeneous affine 2-dimensional manifolds (English)
Author: Vanžurová, Alena
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 49
Issue: 5
Year: 2013
Pages: 347-357
Summary lang: English
.
Category: math
.
Summary: In [19] we proved a theorem which shows how to find, under particular assumptions guaranteeing metrizability (among others, recurrency of the curvature is necessary), all (at least local) pseudo-Riemannian metrics compatible with a given torsion-less linear connection without flat points on a two-dimensional affine manifold. The result has the form of an implication only; if there are flat points, or if curvature is not recurrent, we have no good answer in general, which can be also demonstrated by examples. Note that in higher dimension, the problem is not easy to solve. Here we try to apply this apparatus to the two main types (A and B from [9], [1]) of torsion-less locally homogeneous connections defined in open domains of 2-manifolds. We prove that in dimension two a symmetric linear connection with constant Christoffels is metrizable if and only if it is locally flat. On the other hand, in the class of connections of type B there are even non-flat metrizable connections. (English)
Keyword: manifold
Keyword: connection
Keyword: metric
MSC: 53B05
MSC: 53B20
idZBL: Zbl 06383796
idMR: MR3159333
DOI: 10.5817/AM2013-5-347
.
Date available: 2014-01-16T11:23:26Z
Last updated: 2015-03-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143558
.
Reference: [1] Arias–Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2–dimensional manifolds.Monatsh. Math. 153 (1) (2008), 1–18. Zbl 1155.53009, MR 2366132, 10.1007/s00605-007-0494-0
Reference: [2] Eisenhart, L.P., Veblen, O.: The Riemann geometry and its generalization.Proc. London Math. Soc. 8 (1922), 19–23.
Reference: [3] Jost, J.: Riemannian Geometry and Geometric Analysis.Springer, Berlin, Heidelberg, New York, 2005. Zbl 1083.53001, MR 2165400
Reference: [4] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II.Wiley–Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991.
Reference: [5] Kowalski, O.: On regular curvature structures.Math. Z. 125 (1972), 129–138. Zbl 0234.53024, 10.1007/BF01110924
Reference: [6] Kowalski, O.: Metrizability of affine connections on analytic manifolds.Note Mat. 8 (1) (1988), 1–11. Zbl 0699.53038
Reference: [7] Kowalski, O., Opozda, B., Vlášek, Z.: Curvature homogeneity of affine connections on two-dimensional manifolds.Colloq. Math. 81 (1) (1999), 123–139. Zbl 0942.53019
Reference: [8] Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous affine connections with skew-symmetric Ricci tensor on 2–dimensional manifolds.Monatsh. Math. 130 (2000), 109–125. Zbl 0993.53008, 10.1007/s006050070041
Reference: [9] Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous connections on 2–dimensional manifolds via group–theoretical approach.CEJM 2 (1) (2004), 87–102. Zbl 1060.53013, MR 2041671
Reference: [10] Lovelock, D., Rund, H.: Tensors, Differential Forms, and Variational Principle.A. Wiley Intersc. Publ., New York, London, Sydney, 1975.
Reference: [11] Nomizu, K., Sasaki, T.: Affine Differential Geometry. Geometry of Affine Immersions.Cambridge Univ. Press, 1994.
Reference: [12] Olver, P. J.: Equivalence, Invariants and Symmetry.Cambridge: Univ. Press, 1995. Zbl 0837.58001
Reference: [13] Opozda, B.: On curvature homogeneous and locally homogeneous affine connections.Proc. Amer. Math. Soc. 124 (6) (1996), 1889–1893. Zbl 0864.53013, 10.1090/S0002-9939-96-03455-7
Reference: [14] Opozda, B.: A classification of locally homogeneous connections on 2–dimensional manifolds.Differential Geom. Appl. 21 (2004), 173–198. Zbl 1063.53024, MR 2073824, 10.1016/j.difgeo.2004.03.005
Reference: [15] Petrov, A. Z.: Einstein Spaces.Moscow, 1961, in Russian.
Reference: [16] Vanžurová, A.: Metrization of linear connections, holonomy groups and holonomy algebras.Acta Phys. Debrecina 42 (2008), 39–48.
Reference: [17] Vanžurová, A.: Metrization problem for linear connections and holonomy algebras.Arch. Math. (Brno) 44 (2008), 339–348. Zbl 1212.53021
Reference: [18] Vanžurová, A.: Metrization of connections with regular curvature.Arch. Math. (Brno) 45 (4) (2009), 325–333. Zbl 1212.53020, MR 2591685
Reference: [19] Vanžurová, A., Žáčková, P.: Metrizability of connections on two–manifolds.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 48 (2009), 157–170. Zbl 1195.53023, MR 2641956
Reference: [20] Vanžurová, A., Žáčková, P.: Metrization of linear connections.Aplimat 2009: 8th International Conference Proceedings 2 (2009), 151–163.
.

Files

Files Size Format View
ArchMathRetro_049-2013-5_8.pdf 435.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo