Previous |  Up |  Next

Article

Title: Intersections of essential minimal prime ideals (English)
Author: Taherifar, A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 1
Year: 2014
Pages: 121-130
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal{Z(R)}$ be the set of zero divisor elements of a commutative ring $R$ with identity and $\mathcal{M}$ be the space of minimal prime ideals of $R$ with Zariski topology. An ideal $I$ of $R$ is called strongly dense ideal or briefly $sd$-ideal if $I\subseteq \mathcal{Z(R)}$ and $I$ is contained in no minimal prime ideal. We denote by $R_{K}(\mathcal{M})$, the set of all $a\in R$ for which $\overline{D(a)}= \overline{\mathcal{M}\setminus V(a)}$ is compact. We show that $R$ has property $(A)$ and $\mathcal{M}$ is compact if and only if $R$ has no $sd$-ideal. It is proved that $R_{K}(\mathcal{M})$ is an essential ideal (resp., $sd$-ideal) if and only if $\mathcal{M}$ is an almost locally compact (resp., $\mathcal{M}$ is a locally compact non-compact) space. The intersection of essential minimal prime ideals of a reduced ring $R$ need not be an essential ideal. We find an equivalent condition for which any (resp., any countable) intersection of essential minimal prime ideals of a reduced ring $R$ is an essential ideal. Also it is proved that the intersection of essential minimal prime ideals of $C(X)$ is equal to the socle of C(X) (i.e., $C_{F}(X)= O^{\beta X\setminus I(X)}$). Finally, we show that a topological space $X$ is pseudo-discrete if and only if $I(X)=X_{L}$ and $C_{K}(X)$ is a pure ideal. (English)
Keyword: essential ideals
Keyword: $sd$-ideal
Keyword: almost locally compact space
Keyword: nowhere dense
Keyword: Zariski topology
MSC: 13A15
MSC: 54C40
idZBL: Zbl 06383789
idMR: MR3160830
.
Date available: 2014-01-17T09:40:14Z
Last updated: 2016-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/143572
.
Reference: [1] Abu Osba E.A., Al-Ezeh H.: Purity of the ideal of continuous functions with compact support.Math. J. Okayama Univ. 41 (1999), 111–120. Zbl 0973.54020, MR 1816622
Reference: [2] Aliabad A.R., Azarpanah F., Taherifar A.: Relative $z$-ideals in commutative rings.Comm. Algebra 41 (2013), 325–341. Zbl 1264.13003, MR 3010540, 10.1080/00927872.2011.630706
Reference: [3] Azarpanah F.: Intersection of essential ideals in $C(X)$.Proc. Amer. Math. Soc. 125 (1997), 2149–2154. Zbl 0867.54023, MR 1422843, 10.1090/S0002-9939-97-04086-0
Reference: [4] Azarpanah F.: Essential ideals in $C(X)$.Period. Math. Hungar. 31 (1995), 105–112. Zbl 0867.54023, MR 1609417, 10.1007/BF01876485
Reference: [5] Azarpanah F., Taherifar A.: Relative $z$-ideals in $C(X)$.Topology Appl. 156 (2009), 1711–1717. Zbl 1167.54005, MR 2521707
Reference: [6] Dietrich W.: On the ideal structure of $C(X)$.Trans. Amer. Math. Soc. 152 (1970), 61–77; MR 42:850. Zbl 0205.42402, MR 0265941
Reference: [7] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, New York-Heidelberg, 1976. Zbl 0327.46040, MR 0407579
Reference: [8] Henriksen M., Jerison M.: The space of minimal prime ideals of a commutative ring.Trans. Amer. Math. Soc. 115 (1965), 110–130. Zbl 0147.29105, MR 0194880, 10.1090/S0002-9947-1965-0194880-9
Reference: [9] Henriksen M., Woods R.G.: Cozero complemented spaces; when the space of minimal prime ideals of a $C(X)$ is compact.Topology Appl. 141 (2004), 147–170. Zbl 1067.54015, MR 2058685, 10.1016/j.topol.2003.12.004
Reference: [10] Huckaba J.A.: Commutative Rings with Zero Divisors.Marcel Dekker Inc., New York, 1988. Zbl 0637.13001, MR 0938741
Reference: [11] Huckaba J.A., Keller J.M.: Annihilation of ideals in commutative rings.Pacific J. Math. 83 (1979), 375–379. Zbl 0388.13001, MR 0557938, 10.2140/pjm.1979.83.375
Reference: [12] Karamzadeh O.A.S., Rostami M.: On the intrinsic topology and some related ideals of $C(X)$.Proc. Amer. Math. Soc. 93 (1985), no. 1, 179–184. Zbl 0524.54013, MR 0766552
Reference: [13] Levy R.: Almost P-spaces.Canad. J. Math. 2 (1977), 284–288. Zbl 0342.54032, MR 0464203, 10.4153/CJM-1977-030-7
Reference: [14] McConnel J.C., Robson J.C.: Noncommutative Noetherian Rings.Wiley-Interscience, New York, 1987; MR 89j:16023. MR 0934572
Reference: [15] Safaean S., Taherifar A.: $d$-ideals, $fd$-ideals and prime ideals.submitted.
Reference: [16] Taherifar A.: Some generalizations and unifications of $C_{K}(X)$, $C_{\psi}(X)$ and $C_{\infty}(X)$.arXiv:$1302.0219$ [math.GN].
Reference: [17] Veksler A.I.: $P'$-points, $P'$-sets, $P'$-spaces. A new class of order-continuous measures and functions.Soviet Math. Dokl. 14 (1973), 1445–1450. MR 0341447
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-1_10.pdf 240.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo