Title:
|
Intersections of essential minimal prime ideals (English) |
Author:
|
Taherifar, A. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
55 |
Issue:
|
1 |
Year:
|
2014 |
Pages:
|
121-130 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mathcal{Z(R)}$ be the set of
zero divisor elements of a commutative
ring $R$ with identity and $\mathcal{M}$
be the space of minimal prime ideals
of $R$ with Zariski topology. An ideal
$I$ of $R$ is called strongly dense
ideal or briefly $sd$-ideal
if $I\subseteq \mathcal{Z(R)}$ and $I$
is contained in no minimal prime ideal.
We denote by $R_{K}(\mathcal{M})$, the
set of all $a\in R$ for which
$\overline{D(a)}=
\overline{\mathcal{M}\setminus V(a)}$
is compact. We show that $R$ has
property $(A)$ and $\mathcal{M}$ is
compact if and only if $R$ has no
$sd$-ideal. It is proved that
$R_{K}(\mathcal{M})$ is an essential
ideal (resp., $sd$-ideal) if and only
if $\mathcal{M}$ is an almost locally
compact (resp., $\mathcal{M}$ is a
locally compact non-compact) space.
The intersection of essential minimal
prime ideals of a reduced ring $R$ need
not be an essential ideal. We find an
equivalent condition for which any
(resp., any countable) intersection of
essential minimal prime ideals of a
reduced ring $R$ is an essential ideal.
Also it is proved that the intersection
of essential minimal prime ideals of
$C(X)$ is equal to the socle of C(X)
(i.e., $C_{F}(X)=
O^{\beta X\setminus I(X)}$).
Finally, we show that a
topological space $X$ is pseudo-discrete
if and only if $I(X)=X_{L}$ and
$C_{K}(X)$ is a pure ideal. (English) |
Keyword:
|
essential ideals |
Keyword:
|
$sd$-ideal |
Keyword:
|
almost locally compact space |
Keyword:
|
nowhere dense |
Keyword:
|
Zariski topology |
MSC:
|
13A15 |
MSC:
|
54C40 |
idZBL:
|
Zbl 06383789 |
idMR:
|
MR3160830 |
. |
Date available:
|
2014-01-17T09:40:14Z |
Last updated:
|
2016-04-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143572 |
. |
Reference:
|
[1] Abu Osba E.A., Al-Ezeh H.: Purity of the ideal of continuous functions with compact support.Math. J. Okayama Univ. 41 (1999), 111–120. Zbl 0973.54020, MR 1816622 |
Reference:
|
[2] Aliabad A.R., Azarpanah F., Taherifar A.: Relative $z$-ideals in commutative rings.Comm. Algebra 41 (2013), 325–341. Zbl 1264.13003, MR 3010540, 10.1080/00927872.2011.630706 |
Reference:
|
[3] Azarpanah F.: Intersection of essential ideals in $C(X)$.Proc. Amer. Math. Soc. 125 (1997), 2149–2154. Zbl 0867.54023, MR 1422843, 10.1090/S0002-9939-97-04086-0 |
Reference:
|
[4] Azarpanah F.: Essential ideals in $C(X)$.Period. Math. Hungar. 31 (1995), 105–112. Zbl 0867.54023, MR 1609417, 10.1007/BF01876485 |
Reference:
|
[5] Azarpanah F., Taherifar A.: Relative $z$-ideals in $C(X)$.Topology Appl. 156 (2009), 1711–1717. Zbl 1167.54005, MR 2521707 |
Reference:
|
[6] Dietrich W.: On the ideal structure of $C(X)$.Trans. Amer. Math. Soc. 152 (1970), 61–77; MR 42:850. Zbl 0205.42402, MR 0265941 |
Reference:
|
[7] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, New York-Heidelberg, 1976. Zbl 0327.46040, MR 0407579 |
Reference:
|
[8] Henriksen M., Jerison M.: The space of minimal prime ideals of a commutative ring.Trans. Amer. Math. Soc. 115 (1965), 110–130. Zbl 0147.29105, MR 0194880, 10.1090/S0002-9947-1965-0194880-9 |
Reference:
|
[9] Henriksen M., Woods R.G.: Cozero complemented spaces; when the space of minimal prime ideals of a $C(X)$ is compact.Topology Appl. 141 (2004), 147–170. Zbl 1067.54015, MR 2058685, 10.1016/j.topol.2003.12.004 |
Reference:
|
[10] Huckaba J.A.: Commutative Rings with Zero Divisors.Marcel Dekker Inc., New York, 1988. Zbl 0637.13001, MR 0938741 |
Reference:
|
[11] Huckaba J.A., Keller J.M.: Annihilation of ideals in commutative rings.Pacific J. Math. 83 (1979), 375–379. Zbl 0388.13001, MR 0557938, 10.2140/pjm.1979.83.375 |
Reference:
|
[12] Karamzadeh O.A.S., Rostami M.: On the intrinsic topology and some related ideals of $C(X)$.Proc. Amer. Math. Soc. 93 (1985), no. 1, 179–184. Zbl 0524.54013, MR 0766552 |
Reference:
|
[13] Levy R.: Almost P-spaces.Canad. J. Math. 2 (1977), 284–288. Zbl 0342.54032, MR 0464203, 10.4153/CJM-1977-030-7 |
Reference:
|
[14] McConnel J.C., Robson J.C.: Noncommutative Noetherian Rings.Wiley-Interscience, New York, 1987; MR 89j:16023. MR 0934572 |
Reference:
|
[15] Safaean S., Taherifar A.: $d$-ideals, $fd$-ideals and prime ideals.submitted. |
Reference:
|
[16] Taherifar A.: Some generalizations and unifications of $C_{K}(X)$, $C_{\psi}(X)$ and $C_{\infty}(X)$.arXiv:$1302.0219$ [math.GN]. |
Reference:
|
[17] Veksler A.I.: $P'$-points, $P'$-sets, $P'$-spaces. A new class of order-continuous measures and functions.Soviet Math. Dokl. 14 (1973), 1445–1450. MR 0341447 |
. |