Previous |  Up |  Next

Article

Title: Numerical analysis of a semi-implicit DDFV scheme for the regularized curvature driven level set equation in 2D (English)
Author: Handlovičová, Angela
Author: Kotorová, Dana
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 49
Issue: 6
Year: 2013
Pages: 829-854
Summary lang: English
.
Category: math
.
Summary: Stability and convergence of the linear semi-implicit discrete duality finite volume (DDFV) numerical scheme in 2D for the solution of the regularized curvature driven level set equation is proved. Numerical experiments concerning comparison with exact solution and image filtering problem using proposed scheme are included. (English)
Keyword: mean curvature flow
Keyword: level set equation
Keyword: numerical solution
Keyword: semi-implicit scheme
Keyword: discrete duality finite volume method
Keyword: stability
Keyword: convergence
MSC: 35K55
MSC: 35K65
MSC: 65M08
MSC: 65M12
idZBL: Zbl 1290.65083
idMR: MR3182643
.
Date available: 2014-01-27T12:23:31Z
Last updated: 2015-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/143573
.
Reference: [1] Andreianov, B., Boyer, F., Hubert, F.: Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general 2D meshes..Num. Methods PDE 23 (2007), 1, 145-195. Zbl 1111.65101 Zbl 1111.65101, MR 2275464, 10.1002/num.20170
Reference: [2] Barles, G., Souganidis, P. E.: Convergence of approximation schemes for fully nonlineae second order equations..Asymptotic Anal. 4 (1991), 3, 271-283. Zbl 0729.65077 MR 1115933
Reference: [3] Corsaro, S., Mikula, K., Sarti, A., Sgallari, F.: Semi-implicit covolume method in 3D image segmentation..SIAM J. Sci. Comput Vol. 28 (2006), 6, 2248-2265. Zbl 1126.65088 Zbl 1126.65088, MR 2272260, 10.1137/060651203
Reference: [4] Evans, L. C., Spruck, J.: Motion of level sets by mean curvature I..J. Differential Geometry 33 (1991), 635-681. Zbl 0726.53029 Zbl 0726.53029, MR 1100206
Reference: [5] Eymard, R., Gallouët, T., Herbi, R.: The finite volume method..In: Handbook of Numerical Analysis, Ph. Ciarlet J.L. Lions eds 2000, pp. 715-1022. Zbl 0981.65095 MR 1804748
Reference: [6] Eymard, R., Handlovičová, A., Mikula, K.: Study of a finite volume scheme for the regularized mean curvature flow level set equation..IMA Journal of Numerical Analysis 31 (2011), 3, 813-846. Zbl 1241.65072 Zbl 1241.65072, MR 2832781, 10.1093/imanum/drq025
Reference: [7] Handlovičová, A., Mikula, K.: Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation..Appl. Math., Praha 53 (2008), 2, 105-129. Zbl 1199.35197 Zbl 1199.35197, MR 2399901, 10.1007/s10492-008-0015-z
Reference: [8] Handlovičová, A., Kotorová, D.: Stability of the semi-implicit discrete duality finite volume scheme for the curvature driven level set equation in 2D..Accepted in Tatra mountains mathematical publications.
Reference: [9] Handlovičová, A., Mikula, K., Sgallari, F.: Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution..Numer. Math.93 (2003), No. 4, 675-695. Zbl 1065.65105 Zbl 1065.65105, MR 1961884, 10.1007/s002110100374
Reference: [10] Handlovičová, A., Mikula, K., Sgallari, F.: Variational numerical methods for solving nonlinear diffusion equations arising in image processing..J. Visual Communication and Image Representation 13 (2002), 217-237. 10.1006/jvci.2001.0479
Reference: [11] Kotorová, D.: Discrete duality finite volume scheme for the curvature-driven level set equation in 3D..In: Advances in architectural, civil and environmental engineering: 22nd Annual PhD Student Conference. Bratislava 2012
Reference: [12] Kotorová, D.: Comparison of the 3D numerical scheme for solving curvature-driven level set equation based on discrete duality finite volumes..Accepted to proceedings of ODAM conference Olomouc 2013
Reference: [13] Mikula, K., Sarti, A., Sgallari, F.: Co-volume method for Riemannian mean curvature flow in subjective surfaces multiscale segmentation..Comput. Visual. Sci. 9 (2006), 1, 23-31. MR 2214835, 10.1007/s00791-006-0014-0
Reference: [14] Oberman, A. M.: A convergent monotone difference scheme for motion of level sets by mean curvature..Numer. Math. 99 (2004), 2, 365-379. Zbl 1070.65082 Zbl 1070.65082, MR 2107436, 10.1007/s00211-004-0566-1
Reference: [15] Osher, S., Fedkiw, R.: Level set methods and dynamic implicit surfaces..Springer-Verlag 2003. Zbl 1026.76001 Zbl 1026.76001, MR 1939127
Reference: [16] Sethian, J. A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science..Cambridge University Press, New York 1999. Zbl 0973.76003 MR 1700751
Reference: [17] Walkington, N.: Algorithms for computing motion by mean curvature.SIAM J. Numer. Anal. 33 (1996), 6, 2215-2238. Zbl 0863.65061 Zbl 0863.65061, MR 1427460, 10.1137/S0036142994262068
.

Files

Files Size Format View
Kybernetika_49-2013-6_1.pdf 477.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo